

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/jmph-140

Integrated Rehabilitation and Nursing Management of Cervical Radiculopathy: A Multidisciplinary Perspective

Abdulrahman Mohammed Hakami⁽¹⁾, Saleh Mohammed Alotaibi⁽²⁾, Dina Hamza M Farsi⁽³⁾, Bader Mahmoud Alamri⁽⁴⁾, Raneem Mohammed A Alhazmi⁽⁵⁾, Raed Abdullah Abdu Barkat⁽⁶⁾, Amani Mazyad Almutairi⁽⁷⁾, Turki Ghazi Turki Alotaibi⁽⁸⁾, Norah Mesfer Alqahtani⁽⁹⁾, Huda Daifallah Al Saadi⁽¹⁰⁾, Faisal Abdullah Al Faisal⁽¹¹⁾, Nasser Abdullah D Alkhurayyif⁽¹¹⁾, Abdulaziz Ibrahim M Alfaisal⁽¹¹⁾

Abstract

Background: Cervical radiculopathy is a common condition caused by compression or inflammation of a cervical nerve root, leading to radicular pain, sensory disturbances, and motor weakness in the upper limb. It represents a significant source of disability and work absenteeism, with its etiology shifting from acute disc herniation in younger adults to spondylotic foraminal stenosis in older populations.

Aim: This article aims to provide a comprehensive, multidisciplinary overview of the diagnosis, management, and rehabilitation of cervical radiculopathy, synthesizing perspectives from medicine, nursing, and physical therapy to guide evidence-based, patient-centered care.

Methods: The approach is a synthesis of current clinical guidelines and literature. It details standardized diagnostic procedures, including clinical history, physical examination (e.g., Spurling's test), and confirmatory imaging (MRI) and electrodiagnostic studies. Management strategies are reviewed, encompassing conservative care (pharmacotherapy, physical therapy, injections) and surgical interventions (anterior discectomy and fusion, posterior foraminotomy).

Results: The majority of patients with cervical radiculopathy experience favorable outcomes with conservative management, with many achieving functional recovery within months. For those with refractory symptoms or progressive neurologic deficits, surgical decompression provides more rapid pain relief and functional improvement. Effective outcomes depend on a coordinated, interprofessional approach that integrates accurate diagnosis, staged therapeutic interventions, and structured rehabilitation.

Conclusion: Successful management of cervical radiculopathy hinges on a multidisciplinary model that prioritizes non-operative care initially and reserves surgery for specific indications. A team-based strategy, combining medical treatment, skilled nursing, and targeted rehabilitation, is essential for optimizing patient recovery, function, and long-term quality of life. **Keywords:** Cervical Radiculopathy, Multidisciplinary Management, Conservative Treatment, Surgical Decompression, Nursing Rehabilitation.

1. Introduction

Neck pain constitutes a prevalent clinical complaint with substantial implications for individual function and societal productivity, affecting patients across the lifespan and contributing markedly to disability and work loss; indeed, workers reporting neck pain account for as much as 40 percent of absenteeism from employment [1][2][3]. Within the spectrum of neck disorders, cervical radiculopathy denotes a pathophysiologic state in which a cervical

Saudi Journal of Medicine and Public Health (SJMPH) ISSN 2961-4368

*Corresponding author e-mail: <u>Abhakamy9@gmail.com</u> (Abdulrahman Mohammed Hakami). Receive Date: 16 September 2025, Revise Date: 3 October 2025, Accept Date: 14 October 2025

⁽¹⁾ Sabya General Hospital, Ministry of Health, Saudi Arabia

⁽²⁾ Medical Center - Al-Imam Muhammad Ibn Saud Islamic University, Saudi Arabia

⁽³⁾ Alnahda Primary Healthcare Center, Ministry of Health, Saudi Arabia

⁽⁴⁾Hospital Alharam, Ministry of Health, Saudi Arabia

⁽⁵⁾ Ministry of Health Branch In Jazan, Saudi Arabia

⁽⁶⁾Ealth Center for Command And Control In Jazan Health Complex, Ministry of Health, Saudi Arabia

⁽⁷⁾Qassim Health Cluster Al-Muthanab General Hospital, Rawdat Al-Hasso Health Center, Ministry of Health, Saudi Arabia

⁽⁸⁾Dharma General Hospital Riyadh Third Health Cluster, Ministry of Health, Saudi Arabia

⁽⁹⁾ Riyadh Second Health Cluster - Chest Clinic In Rawadh, Ministry of Health, Saudi Arabia

⁽¹⁰⁾Tuberculosis Chest Disease Center, Ministry of Health, Saudi Arabia

⁽¹¹⁾Tumaer General Hospital, Ministry of Health, Saudi Arabia

spinal nerve root undergoes mechanical compression, chemical irritation, or ischemic impairment, producing a characteristic pattern of radicular pain and sensorimotor disturbance that extends beyond the cervical region into the ipsilateral upper limb, shoulder girdle, upper thorax, and associated dermatomal distributions. The cardinal manifestations of nerve root compromise include lancinating or shooting pain in specific dermatomes, paresthesia, sensory loss, and objective deficits in motor strength and reflexes corresponding to the affected root. Electrophysiologic correlates frequently imaging document denervation changes and structural lesions such as herniated intervertebral discs, foraminal stenosis from spondylotic change, uncovertebral hypertrophy, or less commonly neoplastic or inflammatory processes that produce focal root impingement. Cervical radiculopathy therefore represents a disorder at the interface of mechanical insult and neurophysiologic dysfunction, in which altered axonal conduction, focal inflammation, and secondary muscle inhibition combine to produce the clinical syndrome clinicians encounter [1][2][3].

The condition exerts a measurable decrement in patient reported outcomes, reducing range of motion, manual dexterity, and capacity for sustained activity, and thereby diminishing health related quality of life and vocational performance. Functional limitations reflect both nociceptive drive and neurogenic weakness; grip strength, fine motor control, and endurance often decline when radicular symptoms persist. The natural history of many cases is favorable, with substantial proportions of patients experiencing spontaneous or treatment expedited resolution of pain and neurologic signs over weeks to months, particularly when the inciting lesion is an acute discogenic extrusion that resorbs or when mechanical offloading reduces inflammatory sequelae. Conservative management strategies including targeted physiotherapy, analgesic regimens, selective use of oral or injectable corticosteroids, patient education on activity modification, and structured exercise programs yield symptomatic improvement for a majority of individuals and form the initial therapeutic framework [1][2][3].

Nonetheless, the clinical course warrants vigilant evaluation because a subset of patients demonstrate progressive neurologic deterioration or develop signs suggestive of myelopathy, such as gait disturbance, upper motor neuron signs, or broad sensory level changes, which indicate spinal cord compromise rather than isolated root involvement and necessitate expedited escalation of care. Indications for such escalation include persistent, severe radicular pain refractory to optimized conservative measures, progressive focal motor weakness producing functional impairment, electrodiagnostic evidence of ongoing denervation, or radiographic findings that predict continued or worsening compression. In these

surgical decompression circumstances stabilization may afford more rapid pain relief, arrest neurologic decline, and improve long term functional outcomes. Decision making must integrate symptom duration, severity, objective neurologic findings, radiologic anatomy, patient comorbidities, and occupational demands to individualize the threshold for operative intervention [1][2][3]. Contemporary management paradigms emphasize interprofessional approach that aligns accurate diagnostic stratification with staged therapeutic interventions and outcomes measurement. Precise clinical assessment augmented by magnetic resonance imaging and, when indicated, electromyography refines root localization and informs prognosis. Rehabilitation professionals contribute by restoring function and mitigating recurrence risk through targeted exercise, postural correction, and neural mobilization techniques. Primary care clinicians and specialists coordinate timelines for imaging, specialist referral, and shared decision making. In sum, cervical radiculopathy is a common, functionally limiting condition that usually follows a benign course but requires careful assessment to identify those patients who will benefit from early, more aggressive interventions to prevent irreversible neurologic injury [1][2][3].

Etiology

Cervical radiculopathy arises when a spinal nerve root is subjected to compressive force or chemical inflammation that impairs axonal function and neural conduction. In younger adults, particularly those in the third and fourth decades, the principal mechanism is displacement of disc material through annular disruption. Acute trauma or repetitive loading produces herniation of nucleus pulposus that breaches the annulus fibrosus and encroaches on the lateral recess or neural foramen where the exiting root traverses [4]. The displaced nucleus acts as a mass lesion and as a source of biochemical mediators that provoke local inflammation. In this age group disc fragments often retain a degree of hydration and proteoglycan content that favors extrusion and a clinical syndrome that can begin abruptly after exertion or minor injury. Advancing age alters the dominant mechanisms that produce root compromise. During the fifth and sixth decades disc degeneration becomes the prevalent substrate for symptomatic nerve root impingement. Progressive loss of disc height, fissuring of the annulus, and desiccation of nucleus material change load distribution across the cervical motion segment and promote bulging and peridiscal osteophyte formation. By the seventh decade, degenerative arthropathy of the uncovertebral and facet joints frequently produces progressive foraminal narrowing. Hypertrophic osteophytes and capsular thickening constrict the neural foramen and reduce the available space for the root and its accompanying venous plexus. In many older patients

a mixed pattern emerges in which residual disc material, osteophytic overgrowth, and facet hypertrophy coexist to produce chronic mechanical compression [9].

Most clinical cases therefore reflect a spectrum that spans discrete disc herniation at younger ages to cumulative spondylotic change in later life. Uncovertebral osteophytes, loss of disc height, and posterior osteophyte formation converge to reduce lateral recess volume and impinge the exiting nerve root. The resulting mechanical deformation of the root induces interruption of axoplasmic transport and venous congestion. Venous stasis fosters local ischemia and increases endoneurial pressure, which compromises nutritive flow and axonal metabolism. Concurrent biochemical processes amplify this injury. Fragments of degenerated disc release matrix components and proteases that attract inflammatory cells. Macrophages and lymphocytes infiltrate the periradicular release space and cytokines. prostaglandins, and chemokines that sensitize nociceptors and increase vascular permeability. The combined effect of mechanical loading and biochemical irritation determines whether an anatomic lesion remains clinically silent or provokes the characteristic pain, sensory change, and motor deficit of radiculopathy [9]. Less common structural causes must be recognized because they alter diagnostic and therapeutic choices. Synovial cysts originating from facet joints can herniate into the foramen and compress the root. Arachnoid cysts within the canal or foramen may exert pressure on neural elements. Primary neoplasms and metastatic deposits can invade the vertebral body and erode into the foramen. Vascular anomalies including aberrant or looped vertebral arteries may occupy the foramen and mechanically impinge the root. Traumatic events that avulse nerve roots from the spinal cord produce a distinct clinical picture with severe motor loss. Each of these entities requires targeted imaging and often tailored intervention [9].

Host factors influence susceptibility and modify the pace of degenerative change. Genetic studies including family linkage and twin analyses indicate a substantial hereditary contribution to disc degeneration. Variants that affect collagen structure, matrix turnover, and end plate integrity correlate with earlier onset and with greater radiographic severity These inherited factors interact [7]. environmental exposures so that individuals with certain genotypes are more likely to develop symptomatic spondylosis when exposed to mechanical stressors. Tobacco smoking exerts a direct effect on disc biology. Tobacco constituents accelerate disc tissue, impair diffusion across the end plates, and potentiate inflammatory cascades, thereby increasing the probability that degenerative change will progress to herniation or foraminal stenosis [8]. Smoking also diminishes systemic repair mechanisms and is with worse outcomes after both associated

conservative and operative treatment. Occupational and lifestyle exposures contribute to risk in a manner that depends on task demands. Jobs that require sustained neck flexion, repetitive overhead activity, or heavy loading of the upper limbs increase mechanical stress across cervical segments and raise the incidence of clinically significant spondylosis. Epidemiologic studies demonstrate higher rates of surgically treated cervical spondylosis among construction workers and other manual labor cohorts who perform repetitive or forceful upper limb tasks [9]. The cumulative microtrauma associated with these activities accelerates annular fissuring and facet joint degeneration, and it increases the likelihood of symptomatic foraminal compromise [9].

Socioeconomic and behavioral determinants also operate through modifiable mediators. Mendelian randomization evidence suggests that lower educational attainment predisposes to cervical spondylosis, partly because it associates with higher body mass index and greater tobacco exposure [10]. These findings imply that social interventions that reduce smoking and obesity could lower population incidence and the need for surgical care. They also support the inclusion of occupational health measures and ergonomics in prevention strategies. Finally, the symptomatic expression of radiculopathy reflects both lesion characteristics and host response. Two patients with similar radiographic narrowing may differ markedly in pain and neurologic deficit because variations in inflammatory response, vascular supply, preexisting neural reserve, and central sensitization influence clinical severity. Imaging must therefore be interpreted within the clinical context. The pathophysiologic sequence that links mechanical compression to dysfunction integrates impaired axonal transport, venous congestion, ischemia, inflammatory mediator release, and resultant neural edema. Understanding this sequence clarifies interventions that reduce mechanical load, remove a compressive lesion, or suppress periradicular inflammation can reverse symptoms and restore function in many patients while others progress to chronic neuropathic pain and persistent deficit [9].

Epidemiology

Cervical radiculopathy occurs less frequently than lumbar radiculopathy but remains a notable cause of neck and upper limb pain that affects adults across all age groups. Among the cervical levels, the C7 nerve root is the most commonly affected, accounting for more than half of documented cases. Approximately one quarter of cases involve the C6 root, while involvement of the C1 to C5 and C8 roots is considerably less frequent. The distribution reflects the mechanical and anatomical stresses placed on the lower cervical spine during movement and loading, as well as the smaller dimensions of the C6–C7 and C7–T1 foramina, which make them more susceptible to compression [11]. Occupational and lifestyle factors have a strong influence on disease occurrence.

Individuals involved in manual labor that includes repetitive lifting, sustained postures, or vibration exposure—such as construction workers, mechanics, or drivers—demonstrate higher prevalence rates. Repeated microtrauma from these activities accelerates disc degeneration and foraminal narrowing. Chronic tobacco smoking is an additional risk factor; it impairs disc nutrition, promotes inflammation, and reduces tissue repair capacity, increasing the risk of symptomatic radicular disease. Other contributing elements include poor ergonomics, obesity, and prolonged static postures related to computer-based work, which have become more prominent in modern occupational settings [11].

Population-based data epidemiologic studies highlight the rarity yet clinical importance of cervical radiculopathy. A systematic review analyzing nine observational studies provided a consolidated view of its burden among adults. Pooled results from two high-quality and one lowerquality cohort indicated an annual incidence between 0.8 and 1.8 new cases per 1,000 person-years, while point prevalence estimates ranged from 1.2 to 5.8 per 1,000 individuals across four medium- to high-quality investigations [11]. Although less common than lumbar involvement, these figures underscore a substantial population-level impact when extrapolated globally, especially considering the chronic and recurrent nature of symptoms in a portion of patients. Demographically, middle-aged adults, particularly those between 40 and 60 years, represent the group most often affected, aligning with the peak periods of degenerative spinal change and sustained occupational exposure. Men appear slightly more affected than women, likely reflecting differences in occupational patterns and biomechanical loading. Geographic data comparable incidence rates industrialized regions, with minor variations linked to lifestyle and occupational structures [11]. Overall, cervical radiculopathy represents a clinically significant but relatively infrequent disorder. Its occurrence is shaped by mechanical, lifestyle, and degenerative processes that interact over time, producing a characteristic pattern of age- and occupation-dependent prevalence. Early recognition of risk factors such as heavy manual work, smoking, and poor posture may reduce disease incidence and mitigate its long-term functional burden [11].

Pathophysiology

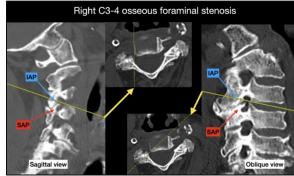
Cervical radiculopathy arises from a complex interplay of mechanical compression, inflammatory responses, and vascular compromise acting upon one or more cervical spinal nerve roots. The underlying process begins when degenerative changes within the intervertebral disc, vertebral bodies, or facet joints alter the normal architecture of the cervical spine, reducing the space available for the nerve roots as they exit the spinal canal. Mechanical deformation remains the primary driver of nerve root injury. Herniated disc

material, disc-osteophyte complexes, or hypertrophic facet joints narrow the intervertebral foramen, producing either constant compression or intermittent impingement that worsens with neck motion such as extension or rotation. These structural alterations not only cause direct pressure on the nerve root but also produce mechanical irritation that triggers secondary biological and vascular changes [11][12]. Compression of the nerve root leads to obstruction of venous outflow, which in turn elevates intraneural pressure and disrupts axoplasmic transport. The impaired transport of nutrients and signaling molecules along the axon results in axonal dysfunction and intraradicular ischemia. When this ischemia becomes prolonged, demyelination and axonal loss occur, leading to sensory and motor deficits that correspond to the affected dermatome and myotome. The mechanical insult also exposes neural tissues to a biochemical cascade that amplifies the inflammatory response and pain perception.

Degenerative changes within the cervical intervertebral disc promote the release of inflammatory mediators from both disc cells and infiltrating immune cells. Breakdown products of the nucleus pulposus and annulus fibrosus release tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), prostaglandins, bradykinin, and substance P into the epidural space. These agents activate nociceptors and lower the depolarization threshold of dorsal root ganglion neurons, enhancing spontaneous and evoked firing rates. This process results in heightened pain sensitivity and refers pain that extends beyond the site of compression, consistent with clinical patterns of radicular pain [11][12]. Proinflammatory cytokines not only sensitize nerve endings but also promote capillary permeability, leading to intraneural edema. The resulting swelling further increases pressure within the confined foramen, aggravating ischemia and perpetuating a self-reinforcing cycle of inflammation compression. Experimental studies demonstrate that TNF-α and IL-6 can directly impair Schwann cell function and delay remyelination, prolonging neural recovery even after mechanical relief. Furthermore, neuropeptides released by sensitized neurons, such as substance P, contribute to neurogenic inflammation by promoting vasodilation and plasma extravasation in surrounding tissues.

The mechanical and chemical stressors interact with the vascular environment of the cervical nerve root. Reduced venous drainage compromised microcirculation create a hypoxic milieu enhances free radical generation mitochondrial dysfunction within neural cells. This oxidative stress contributes to cellular injury and amplifies the inflammatory response. Over time, chronic ischemia may lead to fibrotic changes within epineurium, permanently altering conduction and explaining the persistence of symptoms in chronic cases despite adequate decompression. In mild to moderate cases, the inflammatory response can gradually resolve as resorption of herniated disc fragments occurs through phagocytosis and enzymatic degradation. The regression of mechanical and chemical irritants allows restoration of neural function and pain resolution in a majority of patients. However, persistent compression that exceeds the threshold for recovery leads to irreversible neural damage. Prolonged ischemia, demyelination, and axonal degeneration contribute to progressive weakness, sensory loss, and atrophy in the muscles innervated by the affected root. In these instances, surgical decompression becomes necessary to prevent permanent deficits [11][12].

Additionally, cervical radiculopathy does not occur in isolation. Spinal cord or central sensitization may develop secondary to prolonged nociceptive input, altering pain processing within the dorsal horn and higher centers. This explains why some patients continue to experience pain even after structural compression is relieved. Physical therapists and clinicians often observe that chronic radiculopathy can lead to altered motor control, compensatory postural adjustments, and muscle imbalance, which may sustain symptoms even after resolution of acute nerve irritation. The interplay between mechanical deformation, ischemic injury, and inflammatory neurotoxicity defines the pathophysiology of cervical radiculopathy. Each element reinforces the other, producing a cycle of compression, edema, and sensitization that determines symptom severity and chronicity. Recognition of these mechanisms underscores the need for early, targeted intervention to reduce inflammation, relieve compression, and preserve neural function. Understanding this cascade allows clinicians to tailor treatment strategies that address both mechanical and biochemical aspects, improving the likelihood of functional recovery and minimizing long-term neurological compromise [11][12].


History and Physical

The evaluation of cervical radiculopathy depends on meticulous history-taking and a focused physical examination. Diagnosis is primarily clinical, guided by a pattern of symptoms and signs that correlate with nerve root involvement, since no single test or imaging study can definitively establish the condition. An effective assessment integrates patient-reported symptoms, neurologic findings, and the outcomes of specific provocative maneuvers to confirm nerve root dysfunction and rule out alternative or concurrent pathologies [13].

Clinical History

Patients typically describe a sharp, shooting, or electric pain that begins in the neck and radiates into the upper limb. The pain distribution follows a dermatomal pattern corresponding to the affected cervical nerve root. The most common sites include C6 and C7, which cause pain extending down the arm

into the thumb or middle finger. Accompanying sensory disturbances such as numbness, tingling, or burning sensations reinforce the diagnosis. In many cases, patients also report subjective weakness or difficulty performing fine motor tasks. The coexistence of pain, paresthesia, and weakness significantly increases the clinical probability of cervical radiculopathy. Symptoms are generally unilateral, though bilateral involvement may occur in rare or advanced cases. Pain often worsens with neck extension, rotation toward the symptomatic side, or during activities requiring the arm to be held above shoulder level. These positions narrow the intervertebral foramina, compressing the exiting nerve root and aggravating symptoms. Relief may occur when the neck is flexed or the arm is rested on top of the head, a posture known as the shoulder abduction relief sign, which reduces tension on the compressed root [12][13].

Figure-1: Osseous Foraminal Stenosis. CT image (bone window) demonstrating marked narrowing of the right C3–4 neural foramen.

A thorough history should explore the onset, duration, and progression of symptoms. The clinician should determine whether the pain develops gradually due to degenerative changes or acutely after trauma, as sudden onset following injury may indicate disc herniation or fracture. The aggravating and relieving factors should be noted, as well as occupational and recreational exposures that contribute to repetitive cervical loading or prolonged static postures. Activities such as manual labor, prolonged computer use, or driving can exacerbate radicular symptoms. Previous episodes of neck pain, prior interventions such as physical therapy or injections, and any response to prior treatments should be documented. The examiner must differentiate radiculopathy from other causes of neck and upper limb pain. Axial neck pain is often localized and mechanical, aggravated by movement, and relieved by rest. It rarely radiates beyond the shoulder. In contrast, radiculopathy produces pain that extends into the arm following a predictable dermatomal distribution and is frequently accompanied by neurologic symptoms. Pain reproduction with neck movements, particularly extension and rotation, supports a radicular source. It is also critical to distinguish cervical radiculopathy from cervical myelopathy, a condition involving

compression of the spinal cord rather than the nerve root. Myelopathy presents with more diffuse neurological impairment. Patients may report hand clumsiness, difficulty with fine motor skills such as buttoning clothes, imbalance, or unsteady gait. Symptoms of urinary urgency or retention may also appear. These manifestations, even in the absence of significant neck pain, signal central cord involvement and require immediate evaluation to prevent irreversible neurologic damage [12][13].

Physical Examination

structured Α examination includes inspection, range of motion testing, neurologic assessment, and targeted provocative maneuvers. On inspection, the clinician may observe limited neck motion or the patient holding the head in a guarded posture to minimize pain. Palpation can reveal paraspinal tenderness, though this finding is nonspecific. Neurological assessment focuses on motor strength, sensation, and deep tendon reflexes corresponding to cervical root levels. For example, C5 involvement may produce weakness in shoulder abduction and diminished biceps reflex; C6 affects wrist extension and the brachioradialis reflex; C7 affects triceps strength and reflex; and C8 impacts finger flexion and grip strength. Sensory testing across dermatomes helps localize the affected root. Reflex asymmetry provides additional evidence of focal nerve root dysfunction. Provocative tests such as the Spurling maneuver, shoulder abduction test, and cervical distraction test enhance diagnostic accuracy. The Spurling test, performed by extending and rotating the neck toward the affected side with downward axial pressure, reproduces radicular pain in positive cases. The shoulder abduction test, in which the patient places the hand of the affected limb on the head, may relieve pain by reducing tension on the nerve root. Cervical distraction, applying gentle upward traction on the head, typically reduces pain if nerve compression is the source [12][13].

Red-Flag Features

Certain historical and physical findings raise suspicion for serious underlying pathology. Red flags include systemic symptoms such as fever, night sweats, or unexplained weight loss, which may indicate infection or malignancy. Immunosuppression, history of intravenous drug use, or prior cancer also heighten this concern. Constant pain unrelieved by rest or pain associated with bony tenderness over the vertebrae suggests infection or metastatic disease rather than degenerative radiculopathy. Neurologic red flags such as progressive weakness, loss of coordination, or gait disturbance point toward cervical myelopathy or cord compression, requiring urgent imaging and specialist referral [13][14].

Integration of Findings

The diagnosis of cervical radiculopathy is ultimately clinical, supported by consistent history and examination findings. Imaging such as MRI is used to confirm the suspected level of involvement, particularly when symptoms persist beyond six weeks or when red flags are present. A thorough history and examination remain the foundation for identifying the underlying cause, guiding further testing, and determining whether conservative or surgical management is warranted. Effective clinical evaluation of cervical radiculopathy requires a structured, evidence-based approach emphasizing pattern recognition, early identification of serious pathology, and correlation between patient-reported symptoms and objective findings. This disciplined method ensures accurate diagnosis, prevents mismanagement, and facilitates timely referral for advanced imaging or intervention when necessary [12][13][14].

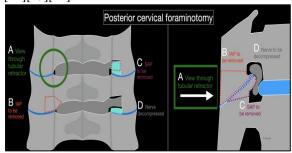


Figure-2: Posterior Cervical Foraminotomy. The operative steps (A-D) of the posterior cervical foraminotomy in a dorsal (left image) and sagittal (right image) view of the cervical spine.

Physical Examination

The physical examination in patients with suspected cervical radiculopathy serves as the foundation for confirming clinical suspicion, identifying the affected nerve root, and excluding central causes such as cervical myelopathy. It requires structured. stepwise approach integrating observation, range-of-motion assessment, neurologic testing, and provocative maneuvers, followed by comprehensive documentation of findings. Cervical range-of-motion testing is the logical starting point. The clinician observes how the patient moves the neck in flexion, extension, lateral bending, and rotation. Restricted or guarded motion, particularly during extension, often reflects underlying pathology such as nerve root irritation or foraminal narrowing. Patients may instinctively avoid certain positions that exacerbate pain or radicular symptoms. Neck extension and rotation toward the affected side frequently reproduce radiating pain because these movements reduce foraminal diameter, further compressing the nerve root. In contrast, flexion may alleviate discomfort by increasing the available space for the nerve [13][14]. After assessing motion, the neurologic survey follows. Motor strength testing across key myotomes provides valuable localization of nerve root dysfunction. Weakness in the deltoid and biceps suggests C5 involvement, while diminished wrist extension indicates C6 pathology. Triceps weakness is characteristic of C7 lesions, finger flexor weakness corresponds to C8 involvement, and impaired interossei strength implicates T1. Testing should be performed bilaterally for accurate comparison. Even subtle asymmetries in strength can signal nerve root compression, particularly when accompanied by sensory loss or altered reflexes.

Sensory examination complements motor testing by evaluating dermatomal integrity. Light touch and pinprick assessments along the upper limb help identify specific sensory deficits that correlate with motor findings. For instance, numbness over the lateral forearm and thumb points to C6 root involvement, while sensory loss over the middle finger aligns with C7 pathology. The distribution of altered sensation helps distinguish radicular symptoms from peripheral nerve entrapments such as carpal tunnel or ulnar neuropathy. Reflex assessment remains an essential component of the examination. The biceps reflex (C5-C6), brachioradialis reflex (C6), and triceps reflex (C7) should be tested bilaterally. A diminished or absent reflex on the symptomatic side often corresponds with the compressed nerve root. Reflex asymmetry provides objective confirmation of neurologic compromise. In advanced or chronic cases, reflex loss may persist even after pain subsides, reflecting longstanding neural injury [12][13][14]. Provocative maneuvers help confirm the diagnosis by reproducing or relieving radicular pain. The Spurling test, the most specific maneuver for cervical radiculopathy, involves extending and rotating the neck toward the symptomatic side while applying gentle axial compression. A positive result occurs when the patient's typical arm pain is reproduced, indicating foraminal encroachment and nerve root irritation. Although the Spurling test has high specificity, its sensitivity is modest, so a negative result does not exclude the diagnosis [12]. Complementary maneuvers such as the shoulder abduction relief test and cervical distraction test provide additional information. The shoulder abduction test, in which the patient places the hand of the affected arm on top of the head, often relieves pain by reducing neural tension. Cervical distraction, achieved through upward traction on the head, typically decreases symptoms if the source is compressive.

Evaluation for cervical myelopathy must accompany all cervical spine examinations because the two conditions may coexist or mimic one another [13]. Degenerative cervical myelopathy can present subtly and progress insidiously. Approximately 40% of the total symptom burden arises from atypical or nontraditional signs such as dizziness, fatigue, or autonomic disturbances, and almost all patients exhibit at least one of these complaints [14]. Early recognition depends on detecting subtle motor and coordination changes. Patients may describe a sensation of leg heaviness, hand clumsiness, or difficulty manipulating small objects. These early symptoms often precede

overt weakness or gait instability. Physical findings of myelopathy differ from those of isolated radiculopathy. Hyperreflexia is a hallmark, reflecting upper motor neuron involvement. The Tromner reflex—elicited by tapping the palmar surface of the distal phalanx of the middle finger—shows the highest sensitivity for myelopathy [15]. Other findings such as Babinski and clonus are highly specific, as are the inverted supinator reflex and a positive Tromner sign [16]. Coordination tests, including tandem gait or rapid finger movements, may reveal subtle deficits not yet evident in strength testing. Systematic clinical documentation ensures consistency and facilitates monitoring over time. Each assessment should begin with a detailed pain profile, including intensity on a numeric scale, distribution, and character. Mapping pain along sensory dermatomes helps localize the affected root and distinguish radiculopathy from myofascial or referred pain. Symptom trajectory should be clearly defined—whether pain, weakness, or paresthesia is improving, stable, or worsening—to gauge disease progression or treatment response [15][16].

Documentation should include prior and current treatments, specifying non-steroidal antiinflammatory drugs, corticosteroids, physical therapy programs, cervical traction, epidural steroid injections, or previous surgeries. The examiner should record the degree of motor deficit using standardized grading scales, noting changes over successive evaluations. Any functional impairment must be detailed in context. Even mild deficits can have disproportionate consequences depending on the patient's occupation. For instance, fine motor weakness that would be tolerable in one profession may disable a surgeon or mechanic who relies on precise hand control. The examination should also document the presence or absence of red flags such as systemic symptoms, progressive weakness, or gait disturbance. These details guide decisions about advanced imaging or specialist referral. In essence, the physical examination for cervical radiculopathy integrates mechanical assessment, neurologic localization, and careful observation for upper motor neuron signs. It is both diagnostic and prognostic, revealing the extent of nerve root compromise and potential progression toward myelopathy. A methodical, reproducible approach enhances diagnostic accuracy, supports appropriate intervention planning, and provides a benchmark for tracking patient recovery or deterioration [15][16].

Evaluation

Plain radiography remains a common firstline imaging strategy in the assessment of cervical spine and radicular complaints, providing rapid evaluation of osseous alignment and chronic degenerative change; lateral projections frequently disclose intervertebral disc space narrowing, osteophytic formation, and other markers of spondylosis, while oblique views may better visualize 494 Integrated Rehabilitation and Nursing Management of Cervical Radiculopathy: A Multidisciplinary:

foraminal dimensions that correspond to the side and level of radicular symptoms, and open-mouth odontoid views retain value when atlantoaxial instability or C1-C2 disruption is suspected [17][18][19][20]. Dynamic flexion-extension radiographs contribute essential information when clinical concern for translational instability exists, permitting appraisal of segmental motion that cannot be inferred from static imaging alone. Computed tomography offers superior delineation of bony anatomy and is especially informative in the acute, trauma-related setting where fracture. dislocation, or osseous foraminal encroachment must be excluded with high sensitivity; its limited soft tissue contrast, however, constrains its diagnostic yield in routine, nontraumatic radiculopathy where disc material and neural structures are the primary targets [17][18][19][20].

Magnetic resonance imaging constitutes the reference standard for noninvasive evaluation of suspected nerve root impingement because of its capacity to resolve soft tissue detail, visualize extradural disc herniations, to demonstrate perineural and foraminal compression, and to detect associated myelopathic signal changes within the cord when present. Although MRI frequently documents anatomic lesions such as disc protrusions or lateral recess narrowing that anatomically correlate with the symptomatic dermatomal distribution, radiographic abnormalities are not pathognomonic and may be present in asymptomatic individuals; therefore, imaging findings must be interpreted in the context of the clinical examination to avoid overattribution of symptoms to incidental degenerative change. MRI also permits assessment of end-plate and vertebral body marrow alterations, including Modic signal changes, which may reflect active disc degeneration and can influence both prognosis and therapeutic planning [21]. When discordance exists between the patient's history and the structural abnormalities demonstrated on MRI, or when multilevel disease complicates localization, adjunctive diagnostic modalities assume a confirmatory Electrodiagnostic testing with nerve conduction studies and needle electromyography can substantiate radicular dysfunction by demonstrating denervation changes within muscles innervated by the implicated root and by excluding peripheral entrapment neuropathies or plexopathies that mimic cervical radiculopathy. EMG offers temporal information about the acuity and severity of axonal injury and can be particularly helpful in chronic or recurrent presentations or when postoperative baseline assessment is required. Selective image-guided nerve root blocks serve a dual diagnostic and therapeutic purpose: temporary amelioration of radicular pain after periradicular anesthetic and steroid injection supports the contention that the targeted root is the principal pain generator and can guide subsequent

definitive intervention, while persistent or absent response may redirect investigation toward alternative pain sources.

Advanced techniques such as high-resolution CT myelography retain a role when MRI is contraindicated or when subtle osseous foraminal stenosis requires clarification prior to surgical planning. Ultimately, a rational imaging and testing pathway begins with targeted radiographs for alignment and instability screening, proceeds to MRI for soft tissue and neural evaluation, and reserves CT, electrodiagnostics, and selective blocks for problemsolving when clinical and standard imaging data do not concordantly localize the pain generator; integration of these modalities with a meticulous clinical assessment yields the most reliable diagnostic framework and informs appropriate conservative or surgical management [17][18][19][20].

Treatment / Management

Management of cervical radiculopathy follows a staged, evidence-informed pathway with immediate goals of pain control, preservation and restoration of neurologic function, and mitigation of recurrence risk, recognizing that the majority of acute presentations resolve spontaneously within two to three months [22][23][24]. Initial care emphasizes patient education, maintenance of normal daily activities as tolerated, and initiation of a structured, progressive home exercise program designed to reduce neural mechanical stress and restore segmental mobility. Conservative modalities constitute the firstline approach for most patients and include pharmacologic anti-inflammatory measures, targeted rehabilitative interventions, and image-guided injections when indicated; these treatments aim to reduce periradicular inflammation, limit nociceptor sensitization, and facilitate functional recovery without surgical exposure. Nonsteroidal antiinflammatory drugs are prescribed for short courses to address the inflammatory component of radicular pain, while short oral corticosteroid tapers may be considered selectively for acute severe presentations where rapid symptomatic relief is required, understanding that long-term systemic corticosteroid use is not supported by outcome data. Neuropathic agents such as gabapentin or pregabalin and tricyclic antidepressants are appropriate adjuncts when radicular pain demonstrates neuropathic characteristics or when chronicity develops. Opioid analgesics are reserved for carefully selected circumstances; routine use is discouraged because opioid therapy associates with slower recovery and delayed occupational reintegration, and because it confers risk of dependence and adverse functional outcomes [25][26]. Physical therapy constitutes a central pillar of conservative care; well-designed programs that combine manual therapy, neural mobilization, progressive strengthening, postural retraining, and cervical stabilization exercises accelerate symptomatic improvement and restore function, and they complement medical and interventional measures. Short-term immobilization with a soft cervical collar may provide transient symptomatic relief by limiting provocative motion, and the nighttime use of a supportive cervical pillow can improve sleep quality during the recovery phase. Alternative therapies such as acupuncture have demonstrated adjunctive benefit for symptom reduction in selected patients and may be integrated into multimodal regimens when available [22][23][24].

When conservative measures fail. periradicular corticosteroid injections delivered by an interlaminar approach under fluoroscopic or digital subtraction guidance offer both diagnostic clarity and therapeutic benefit. Epidural steroid injections can produce substantial pain relief and improve function for many patients, with single procedures yielding durable relief in a significant proportion; interlaminar access is favored for safety because catastrophic neurologic complications appear less common than transforaminal needle placement, nonparticulate steroids such as dexamethasone are recommended to minimize embolic risk. Repeat injections are considered for recurrent symptoms but must respect cumulative dose limits and be integrated within a broader rehabilitation plan. Manipulative approaches that involve high-velocity cervical manipulation carry risk of exacerbating radiculopathy and are generally contraindicated for patients with confirmed nerve root compression; indirect mobilization techniques may be safer and offer symptomatic benefit in selected cases [22][23][24]. Surgical intervention is indicated when objective neurologic deterioration occurs, when motor deficit progresses, or when disabling pain persists despite an adequate trial of conservative care typically spanning six to twelve weeks, although earlier operative consideration is warranted for patients with severe or rapidly advancing deficits. Surgical decision making requires correlation of clinical findings with concordant imaging and an individualized appraisal of comorbidity, occupational demands, and patient preferences. The two principal operative strategies address the compressive pathology via anterior or posterior corridors. Anterior cervical discectomy with neural decompression followed by either fusion or arthroplasty remains a common anterior option when disc herniation or ventral osteophytic complexes predominate, and it allows direct removal of offending material with restoration of foraminal height. Posterior cervical foraminotomy offers a motion-sparing dorsal decompression that can be highly effective for lateralized foraminal stenosis, particularly when the pathology is posterolateral and when cervical alignment and instability do not mandate fusion. Comparative data suggest that both approaches yield favorable outcomes when appropriately selected, and the choice hinges on the anatomic location of compression, the number of levels involved, and surgeon expertise. All operative plans must incorporate discussion of procedure-specific risks including anesthetic complications, nerve injury, vascular injury, dysphagia or recurrent laryngeal nerve dysfunction after anterior approaches, and the potential need for future adjacent-level interventions [22][23][24].

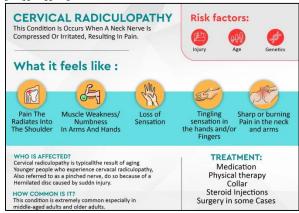


Figure-3: Cervical Radiculopathy Summary.

For patients with persistent postsurgical pain or multifocal neuropathic symptoms unresponsive to standard strategies, neuromodulation such as spinal stimulation may provide symptomatic improvement and functional gains in selected refractory cases, although high-quality evidence remains limited and patient selection criteria are evolving. Regardless of initial pathway, rigorous postoperative or postintervention rehabilitation accelerates recovery, reduces disability, and supports safe return to work; rehabilitation plans integrate progressive range-of-motion exercises, targeted strengthening, ergonomic training, and graded activity resumption tailored to the patient's occupational requirements. Throughout treatment, clinicians must reassess neurologic status regularly and expedite imaging and surgical referral if deficits progress. Secondary prevention strategies include smoking cessation, weight management, and occupational ergonomics to reduce recurrent mechanical loading slow degenerative progression. and Multidisciplinary coordination among primary care, spine surgery, physical therapy, pain management, and occupational health optimizes outcomes by aligning timely intervention with functional restoration and patient-centered goals. In sum, management of cervical radiculopathy rests on a stepwise model that prioritizes nonoperative management for most patients, reserves surgery for refractory or progressive cases, and emphasizes rehabilitation and secondary prevention to preserve neurologic function and minimize recurrence [22][23][24].

Operative technique of posterior cervical foraminotomy

The posterior cervical foraminotomy is performed under general endotracheal anesthesia with continuous neurophysiologic monitoring to record

somatosensory evoked potentials motor evoked potentials and free-run electromyography, and the patient is secured in the prone position on a radiolucent frame with attention to abdominal decompression and pressure point padding while the head is stabilized and longitudinal traction applied via a Mayfield clamp or Gardner-Wells tongs; after fluoroscopic confirmation of spinal alignment and correct operative level the surgical field is prepared and local anesthetic infiltrated to the planned incision site. A small paramedian skin incision is made and the fascia incised followed by progressive soft tissue dilation to establish a working corridor, taking care at all times to avoid inadvertent entry into the intralaminar interval and potential spinal cord injury, and the final dilator is exchanged for a tubular retractor or alternatively a limited midline exposure may be created with ipsilateral paraspinal muscle elevation when a miniopen approach is preferred; fluoroscopic imaging in anterior-posterior and lateral planes confirms both level localization and accurate docking of the retractor [25][26].

Under the operating microscope soft tissue is meticulously removed from the bony surface to expose the lateral laminar margin and the medial portion of the facet complex, and a matchstick burr is used to resect the medial third of the inferior articular process of the superior vertebra while preserving no less than half of the facet joint to minimize the risk of postoperative instability. Subsequent contouring of the superior articular process of the caudal vertebra is accomplished with a fine diamond burr to remove the medial third of the superior medial facet while irrigating continuously to control thermal generation and to protect neural structures, and the residual thin bone shell is elevated and removed with upwardcurved curettes followed by cautious use of 1 mm Kerrison rongeurs for final decompression; early or aggressive use of rongeurs in severely stenotic foramina should be avoided to reduce the chance of mechanical root injury. When an extruded nucleus fragment is encountered the fragment is mobilized and extracted using a nerve hook and microsurgical technique while the nerve root is protected and mobilized as required. Hemostasis is achieved with topical hemostatic agents and bipolar coagulation as needed to control epidural venous oozing, and the field is copiously irrigated to remove bone dust and particulate matter before closure. A drain is seldom necessary. Fascia is approximated with absorbable sutures the deep dermal layer closed, and the skin approximated with subcuticular technique followed by application of a sterile occlusive dressing and placement of a soft cervical collar for patient comfort [25][26].

Perioperative care includes confirmation of neurophysiologic signal integrity throughout the case careful documentation of the decompressed levels and the extent of facet resection and postoperative

instructions that emphasize early mobilization pain control and wound surveillance. Decisions regarding fusion or additional stabilization are preoperatively when multilevel disease instability or deformity is anticipated, but single foraminotomy aims to preserve motion by minimizing facet resection and by avoiding iatrogenic destabilization. The technique can be executed through a minimally invasive tubular approach or through a limited open exposure and the choice depends on surgeon preference anatomy and available instrumentation, but both approaches share the same surgical principles that include precise level localization neural element protection staged and conservative bone removal and hemostasis. Intraoperative neuromonitoring provides real time feedback regarding motor pathway integrity and may reduce the risk of iatrogenic neurologic deficit, and fluoroscopic imaging assists in confirming the target level as well as in guiding tubular placement. Postoperative management addresses pain control early mobilization and physical therapy and monitors for complications including new or worsening neurologic deficit infection hematoma cerebrospinal fluid leak; when complications occur prompt recognition and management are essential to preserve neurologic function [25][26]. Outcomes following isolated posterior cervical foraminotomy are generally favorable for patients with lateralized foraminal stenosis or posterolateral disc herniation that concords with clinical signs and symptoms and when the procedure is performed with preservation of facet architecture and with adherence to microsurgical principles, and ongoing follow up includes clinical assessment of radicular pain strength and sensory function radiographic evaluation when progressive symptoms warrant and rehabilitation targeted to restore function and to reduce recurrence risk [25][26].

Differential Diagnosis

Accurate diagnosis of cervical radiculopathy requires systematic exclusion of alternative disorders that produce neck related arm pain sensory disturbance or focal weakness. Clinical overlap among these entities is common. Each competing condition has distinguishing features on history examination electrodiagnostic testing or imaging that direct further evaluation and management. A methodical approach that prioritizes localization of the lesion and correlation of objective findings with the patient's symptom pattern reduces misdiagnosis and inappropriate intervention. prevents Shoulder pathology frequently mimics cervical radiculopathy because pain referred from the glenohumeral joint or rotator cuff often extends into the lateral arm. Rotator cuff tear impingement syndromes and glenohumeral osteoarthritis produce activity dependent pain that increases with abduction and with passive range of motion testing. Tenderness localized to the greater tuberosity and pain provoked by resisted abduction or external rotation favor intrinsic shoulder disease over neural compromise. In shoulder disorders pain commonly decreases when the arm hangs at the side. By contrast radicular pain usually follows a dermatomal trajectory and is exacerbated by positions that narrow the intervertebral foramen. Provocative cervical maneuvers such as Spurling test tend to be negative in primary shoulder pathology which assists differentiation [25][26].

Median nerve entrapment at the wrist produces a characteristic nocturnal paresthesia and activity related symptoms that spare the neck. Carpal tunnel syndrome yields slowed median sensory conduction across the carpal tunnel on nerve conduction studies while paraspinal denervation is absent. When local anesthetic blockade of the median nerve at the wrist relieves a majority of the patient's symptoms attention shifts to the distal nerve. This diagnostic block therefore serves as a pragmatic test to exclude a cervical source when clinical suspicion remains equivocal. Ulnar neuropathy at the elbow causes sensory loss of the fourth and fifth digits and intrinsic hand weakness while sparing sensation of the medial forearm which is typically intact because it is supplied by the medial antebrachial cutaneous nerve. Preservation of strength in thenar muscles and the lateral lumbricals argues against a proximal C8 to T1 radiculopathy and suggests a focal compressive lesion at the cubital tunnel. Electrodiagnostic mapping that demonstrates a conduction block or focal slowing across the elbow confirms the peripheral site of injury. Neuralgic amyotrophy or Parsonage Turner syndrome presents with an abrupt severe shoulder girdle pain followed by patchy focal pareses that do not conform to a single root distribution. The disorder often evolves with multifocal denervation on electromyography and with minimal radiographic correlates. The temporal pattern of excruciating onset followed by weakness is a clinical hallmark that distinguishes brachial neuritis from mechanically mediated radiculopathy [25][26].

Thoracic outlet syndrome produces positional paresthesias that worsen with overhead activity and frequently associates with vascular signs or diminution of the radial pulse on provocative maneuvers. Symptoms often reflect dynamic compression of the neurovascular bundle between the first rib and the clavicle, and they are not alleviated by cervical traction. Positive elevated arm stress tests or reproduction of vascular compromise on provocative testing point to thoracic outlet pathology rather than foraminal root compression. Peripheral entrapments and brachial plexopathies can closely mimic segmental cervical lesions. Posterior interosseous nerve syndrome long thoracic nerve palsy and idiopathic brachial plexitis yield selective motor deficits that require detailed motor mapping and nerve conduction studies for localization distal to the foramen. Distinguishing a plexopathy from a radiculopathy rest on the pattern of muscles involved the presence or absence of sensory loss in specific

cutaneous territories and on electrodiagnostic evidence indicating a lesion outside the spinal root. Myofascial and musculoskeletal pain syndromes such as cervical facet arthropathy trigger point mediated pain and simple strain present with localized tenderness normal neurologic testing and imaging that fails to show root compression. These conditions are load dependent and respond to directed manual therapy and exercise. Their lack of objective neurologic deficit is a key discriminator [25][26].

Serious cervical spine disorders require early recognition because they mandate expedited imaging and different treatment pathways. Spinal cord compression infection and neoplasm must be suspected when patients manifest bilateral symptoms progressive gait disturbance or systemic signs such as fever night sweats or unexplained weight loss. The presence of these features lowers the pretest probability of a benign compressive radiculopathy and raises the necessity for urgent magnetic resonance imaging to assess for central canal compromise osseous destruction or paraspinal inflammatory or infiltrative disease. In all cases electrodiagnostic testing and imaging should be used to corroborate clinical localization rather than to substitute for it. Electromyography identifies active denervation within muscles supplied by the implicated root and refines acuity and severity while nerve conduction studies exclude distal entrapments. Magnetic resonance imaging delineates soft tissue causes of root compromise and identifies cord signal change that signals myelopathy. Selective diagnostic injections can further confirm the symptomatic level when imaging and clinical findings are discordant. Integration of history examination electrodiagnostics and targeted imaging yields the most reliable distinction among these entities and guides appropriate conservative or operative care [25][26].

Prognosis

Outcomes for patients with cervical radiculopathy are favorable in the majority of cases conservative management. Longitudinal observational data and systematic reviews indicate that a large proportion of individuals attain satisfactory functional recovery within months of symptom onset. A pooled analysis demonstrated that at three years post presentation approximately 83 percent of patients regain acceptable function and resume baseline activities [27]. This natural history underpins recommendations for an initial trial of nonoperative care for most patients who do not exhibit red flag features or progressive neurologic Randomized trial evidence comparing operative and nonoperative strategies indicates that surgical decompression yields more rapid reductions in pain and disability across the first postoperative year. Functional gains attributable to surgery are most apparent during the acute and subacute intervals. By the end of the first postoperative year the differences in pain scores and disability measures between

surgically treated cohorts and those managed conservatively tend to converge, though some patients derive persistent additional benefit from timely surgical intervention [28]. These findings support a treatment paradigm in which surgery is reserved for individuals who fail an adequate period of structured conservative therapy or who manifest disabling pain or progressive motor weakness that threatens function [28].

Patient and job related variables influence the likelihood of successful operative outcomes. Analyses modeling outcomes after anterior cervical procedures for degenerative radiculopathy identified several predictors of poor surgical response. Employment involving heavy manual labor, lower educational attainment, ongoing litigation, prior cervical surgery, symptom duration exceeding three months, elevated baseline disability scores, and concurrent anxiety were each associated with less favorable postoperative recovery. Additional factors such as active cigarette smoking and limited proficiency in the dominant language of care further predicted persistent arm pain after surgery [29]. These observations emphasize the need for comprehensive preoperative appraisal that extends beyond imaging and neurologic metrics to include psychosocial, occupational, and behavioral domains. Addressing modifiable risk factors before proceeding to operative care can improve patient selection and optimize outcomes. Anatomic level of involvement also modulates prognosis. Comparative analyses reveal that patients with C8 radiculopathy experience smaller improvements in postoperative arm pain and disability relative to those with C5 through C7 involvement. Objective sensory deficits more commonly persist than pain after decompression; numbness and paresthesia frequently remain despite successful relief of radicular pain [30]. Clinicians must therefore set measured expectations with patients regarding the differential responsiveness of pain versus sensory dysfunction to intervention. Motor recovery may lag behind pain relief and in some cases fail to fully normalize when chronic denervation Early identification preexists. and decompression in the presence of progressive motor loss remain critical to preserve function [29].

Adverse events arise from the untreated natural history, from pharmacologic and rehabilitative therapies, from image guided spinal injections, and from surgical intervention. Analgesic regimens and rehabilitative modalities, while largely safe, carry measurable risk. Nonsteroidal anti-inflammatory agents may precipitate gastrointestinal hemorrhage or renal impairment. Extended opioid exposure is associated with dependence, impaired return to work, and worse functional trajectories. Agents used to treat neuropathic pain such as gabapentin pregabalin, and tricyclic antidepressants can induce sedation balance impairment and dizziness that interferes with rehabilitation. Short corticosteroid courses can transiently decrease pain but pose hazards to glycemic control and mood in susceptible patients. Manual therapies and exercise are generally well tolerated although transient soreness is common. High velocity cervical manipulation may exacerbate radicular pathology and is contraindicated in the presence of documented root compression. Epidural steroid injections provide targeted anti-inflammatory therapy to the periradicular space. While many patients derive clinically meaningful and sometimes durable relief from these procedures serious complications have been reported albeit infrequently. Major adverse events documented in the literature include epidural hematoma, infectious abscess, chemical or bacterial meningitis, infarction of the spinal cord or brain stem linked to inadvertent arterial embolization of particulate steroid, and direct neural trauma. Less severe but more common effects include transient flushing and postdural puncture headache [31]. These risks influence procedural technique selection and advocate for image guidance and the use of nonparticulate steroid formulations when feasible.

Aggregate postoperative morbidity after anterior cervical discectomy and fusion approximates 16 percent in large sample analyses encompassing fifty thousand patients [32]. Specific complications such as excessive postoperative neck swelling pseudarthrosis dysphagia and graft or cage subsidence each occur in a nontrivial minority of patients with incidence approaching ten percent in some series; the probability of these adverse events increases when multilevel fusion is performed or when advanced patient age is present. Surgeons must weigh these risks against potential benefits when counseling patients and planning the extent of surgical reconstruction.

Rehabilitation:

Rehabilitation following operative or nonoperative treatment is multidimensional and typically integrates manual based therapies traction mobilization and exercise. Mechanical traction has been identified as an effective modality in some comparative studies and often forms a component of comprehensive rehabilitation programs that also include stretching strengthening and neural mobilization exercises [33][34]. Evidence supports combined multimodal rehabilitation as more effective in reducing radicular symptoms than isolated single interventions, although the incremental contribution of individual components requires further high quality study [35]. Early initiation of appropriately dosed rehabilitative efforts expedites pain reduction and functional restoration while mitigating the risk of chronicity.

Patient Education:

Patient education and exposure modification constitute core elements of secondary prevention. Clinicians should counsel patients to believe that occupational factors such as repetitive overhead work heavy lifting prolonged driving and exposure to vibrating tools increase cumulative cervical load and predispose to root irritation. Smoking cessation weight management workplace ergonomic modification scheduled micro breaks, and the use of mechanical aids reduce the mechanical and inflammatory milieu that fosters recurrence. Instruction in posture maintenance and in techniques that limit sustained cervical flexion, or awkward rotation helps reduce foraminal stress. Regular aerobic conditioning and neck specific strength training enhance paraspinal endurance and spinal stability thereby lowering recurrence risk. Self-management strategies such as intermittent mechanical traction short term soft collar use and sleeping with a contoured pillow may provide symptomatic relief when used judiciously. High velocity cervical manipulation should be avoided in patients with established radiculopathy [36].

Team Outcomes:

Interprofessional collaboration optimizes outcomes and minimizes harm. Primary care physicians and neurologists frequently initiate assessment coordinate imaging and exclude red flag pathology. Advanced practice providers and nurses monitor symptom trajectories reinforce education and ensure timely follow up. Pharmacists support safe analgesic regimens and advise on reducing opioid exposure. Physical therapists design and supervise individualized exercise and manual therapy programs. Surgeons and pain specialists determine the need and for invasive interventions. timing communication among team members reduces fragmentation of care prevents overtreatment and avoids undertreatment. A stepwise model that begins with conservative therapy reserves surgery for progressive neurologic deficit or refractory disabling pain. Delaying necessary surgical decompression when deficits progress leads to worse outcomes. Vigilant reassessment by the care team ensures prompt escalation when clinical targets are not met. In sum prognosis after cervical radiculopathy is generally good with most patients improving without surgery and regaining satisfactory function by three years. Surgical intervention accelerates symptomatic recovery for selected patients and provides durable benefit in appropriately chosen cases. Outcome variability reflects a confluence of biologic lesion characteristics patient behavior occupational factors and psychosocial context. Comprehensive risk assessment meticulous patient selection optimized perioperative care and coordinated rehabilitation maximize the likelihood of functional recovery while minimizing complications [36].

Conclusion:

In conclusion, cervical radiculopathy is a condition with a generally favorable prognosis, where most patients achieve significant functional recovery through structured conservative management. This non-operative approach, which includes patient education, pharmacologic therapy, and targeted physical rehabilitation, forms the cornerstone of initial

treatment. For the subset of patients with persistent, disabling pain or progressive neurological deficits, surgical interventions such as anterior cervical discectomy and fusion or posterior foraminotomy offer effective decompression and can accelerate recovery. Crucially, the management of cervical radiculopathy is most effective when delivered through a coordinated, multidisciplinary team. This model integrates the expertise of physicians, advanced practice providers, physical therapists, and nurses to ensure accurate diagnosis, appropriate treatment escalation, and comprehensive patient education. Ultimately, a patient-centered approach that aligns therapeutic interventions with individual functional goals and risk factors is paramount to minimizing disability, preventing recurrence, and restoring longterm quality of life.

References:

- Peolsson A, Peterson G, Hermansen A, Ludvigsson ML, Dedering Å, Löfgren H. Physiotherapy after anterior cervical spine surgery for cervical disc disease: study protocol of a prospective randomised study to compare internet-based neck-specific exercise with prescribed physical activity. BMJ Open. 2019 Feb 19;9(2):e027387.
- 2. Hassan KZ, Sherman AL. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Jul 17, 2023. Epidural Steroids.
- 3. Doughty CT, Bowley MP. Entrapment Neuropathies of the Upper Extremity. Med Clin North Am. 2019 Mar;103(2):357-370.
- 4. Ament JD, Karnati T, Kulubya E, Kim KD, Johnson JP. Treatment of cervical radiculopathy: A review of the evolution and economics. Surg Neurol Int. 2018;9:35.
- 5. Kuo DT, Tadi P. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): May 1, 2023. Cervical Spondylosis.
- 6. Sharrak S, Al Khalili Y. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Aug 28, 2023. Cervical Disc Herniation.
- Battié MC, Videman T, Kaprio J, Gibbons LE, Gill K, Manninen H, Saarela J, Peltonen L. The Twin Spine Study: contributions to a changing view of disc degeneration. Spine J. 2009 Jan-Feb;9(1):47-59.
- 8. Rajesh N, Moudgil-Joshi J, Kaliaperumal C. Smoking and degenerative spinal disease: A systematic review. Brain Spine. 2022;2:100916.
- 9. Jackson JA, Liv P, Sayed-Noor AS, Punnett L, Wahlström J. Risk factors for surgically treated cervical spondylosis in male construction workers: a 20-year prospective study. Spine J. 2023 Jan;23(1):136-145.
- 10. Sun Y, Jin M, Yu T, Zhang J. Cardiovascular risk factors mediating the protective effect of education on cervical spondylosis risk. Sci Rep. 2023 Jan 17;13(1):936.

- 11. Mansfield M, Smith T, Spahr N, Thacker M. Cervical spine radiculopathy epidemiology: A systematic review. Musculoskeletal Care. 2020 Dec;18(4):555-567.
- Lin LH, Lin TY, Chang KV, Tzang CC, Wu WT, Özçakar L. Diagnostic Performance of Spurling's Test for the Assessment Subacute and Chronic Cervical Radiculopathy: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil. 2025 Aug 01;104(8):717-723.
- 13. Donnally III CJ, Hanna A, Odom CK. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Jan 15, 2023. Cervical Myelopathy.
- 14. Munro CF, Yurac R, Moritz ZC, Fehlings MG, Rodrigues-Pinto R, Milligan J, Margetis K, Kotter MRN, Davies BM. Targeting earlier diagnosis: What symptoms come first in Degenerative Cervical Myelopathy? PLoS One. 2023;18(3):e0281856.
- 15. Jiang Z, Davies B, Zipser C, Margetis K, Martin A, Matsoukas S, Zipser-Mohammadzada F, Kheram N, Boraschi A, Zakin E, Obadaseraye OR, Fehlings MG, Wilson J, Yurac R, Cook CE, Milligan J, Tabrah J, Widdop S, Wood L, Roberts EA, Rujeedawa T, Tetreault L., AO Spine RECODE-DCM Diagnostic Criteria Incubator. The Frequency of Symptoms in Patients With a Diagnosis of Degenerative Cervical Myelopathy: Results of a Scoping Review. Global Spine J. 2024 May;14(4):1395-1421.
- 16. Jiang Z, Davies B, Zipser C, Margetis K, Martin A, Matsoukas S, Zipser-Mohammadzada F, Kheram N, Boraschi A, Zakin E, Obadaseraye OR, Fehlings MG, Wilson J, Yurac R, Cook CE, Milligan J, Tabrah J, Widdop S, Wood L, Roberts EA, Rujeedawa T, Tetreault L., AO Spine RECODE-DCM Diagnostic Criteria Incubator. The value of Clinical signs in the diagnosis of Degenerative Cervical Myelopathy A Systematic review and Meta-analysis. Global Spine J. 2024 May;14(4):1369-1394.
- Lukies MW, Teoh WW, Clements W. Safety of CT-guided cervical nerve root corticosteroid injections. J Med Imaging Radiat Oncol. 2019 Jun;63(3):300-306.
- 18. Miyoshi K. [Dissociation of Anatomical (Neurological) Diagnosis and Imaging Diagnosis]. Brain Nerve. 2019 Mar;71(3):249-256.
- 19. Jenkins HJ, Downie AS, Moore CS, French SD. Current evidence for spinal X-ray use in the chiropractic profession: a narrative review. Chiropr Man Therap. 2018;26:48.
- 20. Bise S, Pesquer L, Feldis M, Bou Antoun M, Silvestre A, Hocquelet A, Dallaudière B. Comparison of three CT-guided epidural steroid injection approaches in 104 patients with cervical radicular pain: transforaminal anterolateral,

- posterolateral, and transfacet indirect. Skeletal Radiol. 2018 Dec;47(12):1625-1633.
- Fakhoury J, Dowling TJ. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Aug 14, 2023. Cervical Degenerative Disc Disease.
- 22. Nordin M, Randhawa K, Torres P, Yu H, Haldeman S, Brady O, Côté P, Torres C, Modic M, Mullerpatan R, Cedraschi C, Chou R, Acaroğlu E, Hurwitz EL, Lemeunier N, Dudler J, Taylor-Vaisey A, Sönmez E. The Global Spine Care Initiative: a systematic review for the assessment of spine-related complaints in populations with limited resources and in lowand middle-income communities. Eur Spine J. 2018 Sep;27(Suppl 6):816-827.
- 23. Fehlings MG, Tetreault LA, Riew KD, Middleton JW, Aarabi B, Arnold PM, Brodke DS, Burns AS, Carette S, Chen R, Chiba K, Dettori JR, Furlan JC, Harrop JS, Holly LT, Kalsi-Ryan S, Kotter M, Kwon BK, Martin AR, Milligan J, Nakashima H, Nagoshi N, Rhee J, Singh A, Skelly AC, Sodhi S, Wilson JR, Yee A, Wang JC. A Clinical Practice Guideline for the Management of Patients With Degenerative Cervical Myelopathy: Recommendations for Patients With Mild, Moderate, and Severe Disease Nonmyelopathic Patients With Evidence of Cord Compression. Global Spine J. 2017 Sep;7(3 Suppl):70S-83S.
- 24. Guan Q, Xing F, Long Y, Xiang Z. Cervical intradural disc herniation: A systematic review. J Clin Neurosci. 2018 Feb;48:1-6.
- 25. Mattozzi I. [Conservative treatment of cervical radiculopathy with 5% lidocaine medicated plaster]. Minerva Med. 2015 Feb;106(1):1-7.
- Carlesso LC, Macdermid JC, Gross AR, Walton DM, Santaguida PL. Treatment preferences amongst physical therapists and chiropractors for the management of neck pain: results of an international survey. Chiropr Man Therap. 2014 Mar 24;22(1):11.
- 27. Wong JJ, Côté P, Quesnele JJ, Stern PJ, Mior SA. The course and prognostic factors of symptomatic cervical disc herniation with radiculopathy: a systematic review of the literature. Spine J. 2014 Aug 01;14(8):1781-9.
- 28. Luyao H, Xiaoxiao Y, Tianxiao F, Yuandong L, Ping Wang Management of Cervical Spondylotic Radiculopathy: A Systematic review. Global Spine J. 2022 Oct;12(8):1912-1924.
- 29. Mjåset C, Solberg TK, Zwart JA, Småstuen MC, Kolstad F, Grotle M. Anterior surgical treatment for cervical degenerative radiculopathy: a prediction model for non-success. Acta Neurochir (Wien). 2023 Jan;165(1):145-157.
- 30. Oshina M, Kawamura N, Tachibana N, Higashikawa A, Ono T, Takeshita Y, Okazaki R, Fukushima M, Iwai H, Kato S, Matsubayashi Y,

Saudi J. Med. Pub. Health Vol. 2 No. 2 (2025)

- Taniguchi Y, Tanaka S, Oshima Y. Comparison of surgical outcomes for cervical radiculopathy by nerve root level. Sci Rep. 2024 Aug 14;14(1):18891.
- Peene L, Cohen SP, Brouwer B, James R, Wolff A, Van Boxem K, Van Zundert J. 2. Cervical radicular pain. Pain Pract. 2023 Sep;23(7):800-817.
- 32. Tavanaei R, Ansari A, Hatami A, Heidari MJ, Dehghani M, Hajiloo A, Khorasanizadeh M, Margetis K. Postoperative complications of anterior cervical discectomy and fusion: A comprehensive systematic review and meta-analysis. N Am Spine Soc J. 2025 Mar;21:100596.
- 33. Kuligowski T, Skrzek A, Cieślik B. Manual Therapy in Cervical and Lumbar Radiculopathy: A Systematic Review of the Literature. Int J Environ Res Public Health. 2021 Jun 07;18(11)
- 34. Caridi JM, Pumberger M, Hughes AP. Cervical radiculopathy: a review. HSS J. 2011 Oct;7(3):265-72.
- Bukhari SR, Shakil-Ur-Rehman S, Ahmad S, Naeem A. Comparison between effectiveness of Mechanical and Manual Traction combined with mobilization and exercise therapy in Patients with Cervical Radiculopathy. Pak J Med Sci. 2016 Jan-Feb;32(1):31-4.
- 36. Magnus, W., Viswanath, O., Viswanathan, V.K. and Mesfin, F.B., 2024. Cervical radiculopathy. In *StatPearls [Internet]*. StatPearls Publishing.