

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/jmph-152

Emergency Management of Febrile Seizures: Clinical Assessment and First Aid Interventions in Prehospital and Emergency Settings

Mohammad Ageel Hassan Alghamdi, Emad Mohammad Salem Alqarni, Abdullh Othman Ahmad Alghamdi, Khaled Ahmad Eisi Khormi, Ahmad Amer Ahmad Al Shehri

Red Crescent Authority, Ministry of Health, Saudi Arabia.

Abstract

Background: Febrile seizures are the most common neurological disorder in early childhood, affecting children between 6 months and 5 years of age. They are convulsive events associated with a fever, distinct from intracranial infections or pre-existing epilepsy, and while generally benign, they are a frequent cause of caregiver anxiety and emergency department visits. **Aim:** This article aims to outline the evidence-based clinical approach to febrile seizures, focusing on accurate diagnosis, acute management, and appropriate diagnostic workup to distinguish simple from complex presentations and rule out serious underlying conditions.

Methods: A comprehensive review of the etiology, pathophysiology, and classification of febrile seizures is presented. The evaluation and management strategies are detailed, emphasizing a thorough history and physical examination to guide selective use of diagnostic tests such as lumbar puncture, electroencephalogram (EEG), and neuroimaging. First-line pharmacological interventions for prolonged seizures are also discussed.

Results: The majority of febrile seizures are simple, self-limited, and require no specific treatment beyond identifying and managing the underlying febrile illness. Complex febrile seizures (prolonged, focal, or recurrent within 24 hours) warrant a more extensive evaluation to exclude serious pathologies like meningitis or structural abnormalities. Rescue benzodiazepines are effective for aborting prolonged seizures in prehospital and emergency settings.

Conclusion: The management of febrile seizures is primarily supportive and focused on reassurance. A structured, interprofessional approach ensures safe, effective care, minimizes unnecessary interventions, and provides crucial education to caregivers.

Keywords: Febrile Seizure, Pediatric Seizure, Status Epilepticus, Benzodiazepines, Seizure First Aid, Complex Febrile Seizure.

Introduction

Febrile seizures are convulsive events that occur in the pediatric population, most frequently between six months and five years of age, in temporal association with an elevation of body temperature above 100.4 °F (38 °C) when no intracranial infection, metabolic derangement, toxic exposure, or prior afebrile seizure disorder can account for the event [1]. There is no universally applicable numeric fever threshold that reliably predicts seizure occurrence because individual children differ in their temperature convulsive sensitivity and threshold Epidemiologic and pathophysiologic investigations identify several predisposing conditions, including preexisting neurologic impairment, concurrent viral illness, a positive family history of seizures, developmental delay, low serum zinc or iron concentrations, and maternal factors such as tobacco exposure and psychosocial stress, all of which appear to increase the probability of a febrile convulsion [1]. The great majority of febrile seizures are self-limited and do not produce lasting neurologic sequelae; nonetheless, epidemiologic evidence indicates that a subset of children who experience febrile seizures may carry an elevated lifetime risk for subsequent epilepsy or chronic seizure disorders, a risk that is thought to reflect either an antecedent, unrecognized cerebral vulnerability or an effect of prolonged or repetitive febrile seizures on the immature central nervous system [1]. Clinically, febrile seizures are divided into categories that have prognostic and management implications. Simple febrile seizures, which represent the predominant phenotype, are generalized convulsions that are singular within a 24-hour period and terminate within 15 minutes. Complex febrile seizures diverge from this pattern by manifesting focal neurologic signs, occurring more than once within 24 hours, or persisting for 15 minutes or longer. A further, infrequent but clinically significant presentation is febrile status epilepticus, defined by seizure activity that extends beyond 30 minutes and associated with higher morbidity and an increased likelihood of subsequent neurologic complications compared with the simple form [1].

The diagnostic approach to a child after a febrile convulsion center on careful phenotypic characterization of the seizure and an evidence-based search for the fever's etiology. This assessment integrates a focused history and directs physical examination with judicious use of diagnostic studies when indicated by clinical findings. Most children who present with a brief, generalized, first-time febrile seizure and otherwise reassuring examination findings may be managed expectantly because spontaneous resolution is typical and invasive testing seldom alters care. By contrast, children with prolonged, recurrent, or focal seizures or those with concerning neurologic examination findings require prompt interventions to terminate ongoing seizure activity and to identify potentially treatable causes. In such instances, anticonvulsant therapy may be necessary to abort the event and to prevent neuronal injury [4]. Contemporary educational and clinical programs addressing febrile seizures emphasize enhancing clinician competence across the spectrum of care, from initial recognition and stabilization to diagnostic triage and longitudinal counseling of families. Training objectives include refining the clinician's ability to differentiate simple from complex presentations, applying evidence-based indications for laboratory testing and neuroimaging, administering acute anticonvulsant therapy when indicated, and coordinating appropriate follow-up with neurology and primary care. Equally important is structured caregiver education to reduce anxiety, to instruct on first-aid measures during convulsive events, and to clarify the generally favorable prognosis associated with simple febrile seizures. By equipping healthcare professionals with updated knowledge and practical skills, the clinical aim is to ensure timely, proportionate treatment, to limit unnecessary interventions, and to optimize outcomes for affected children and their families.

	Simple	Complex
Definition	< 15 minutes Non-focal Only 1 episode in 24 hours	≥ 15 minutes OR Focal OR ≥ 2 episodes in 24 hours
Work-up	Routine fever workup based on age, immunization status, presentation	Consider: Chem panel, glucose, ECG, Utox Fever w/u consider: CBC, Bcx, UA, Ucx, Viral panel
Consider LP	6-12 months: consider if not immunized, pretreated with antibiotics Any age: meningeal signs	Same as simple febrile seizure Strong consideration if prolonged seizure or status epilepticus
EEG, CT, MRI	Not indicated	Imaging if focal neuro signs Otherwise, clinical judgment

Figure-1: Types of febrile seizures.

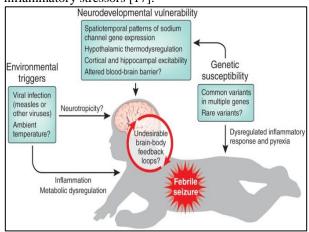
Etiology

Febrile seizures constitute a distinct clinical phenomenon in early childhood, defined by the occurrence of a generalized convulsion in association with fever—commonly above 100.4 °F (38 °C)—in the absence of central nervous system infection, metabolic derangement, intoxication, or a preexisting unprovoked seizure disorder [1]. The precipitating

fever threshold is not uniform across patients; rather, individual convulsive temperature set points vary, reflecting interindividual differences in neuronal and maturational excitability state Epidemiologic and mechanistic studies implicate a convergence of host vulnerabilities, environmental triggers, and developmental factors as determinants of seizure susceptibility during febrile illnesses. Key host factors that elevate risk include antecedent neurologic developmental impairment. delay. familial aggregation of seizures, micronutrient deficiencies (notably iron and zinc), and perinatal or maternal exposures such as tobacco use and psychosocial stressors [1]. Genetic predisposition plays a substantial role in the propensity to develop febrile seizures. Family studies demonstrate that 10% to 33% of affected children have a first-degree relative with a history of seizures, and twin concordance data show markedly higher agreement among monozygotic pairs relative to dizygotic pairs, implicating heritable influences [5][6]. The genetic architecture appears heterogeneous, encompassing both single-gene loci with large effect in familial syndromes and a polygenic or multifactorial background that modulates threshold. Linkage and association studies have identified susceptibility regions across multiple chromosomal loci—including but not limited to 1q31, 2q23-34, 3p24.2-3q26.2, 5q14-34, 6g22-24, 8g13-21, 18p11.2, 19p13–q, and 21q22—supporting a model in which multiple genomic regions contribute additive or interactive risk [5]. In some pedigrees, an autosomal dominant pattern with reduced penetrance has been described, whereas in the population at large, a complex inheritance model is most consistent with observed familial recurrence rates.

Physiologic determinants of seizure emergence during febrile illness include both the magnitude of the febrile response and the intrinsic seizure threshold of the developing brain. Evidence suggests that peak temperature attained during a febrile episode correlates more strongly with seizure risk than the rate of temperature rise, indicating that absolute thermal stress may be the dominant proximate trigger [7][8][9]. The seizure threshold itself is age-dependent, with infancy representing a period of heightened vulnerability due to incomplete maturation of inhibitory neurotransmission and enhanced neuronal excitability. Premature infants, and those who have received postnatal corticosteroids, manifest even greater susceptibility, reflecting both developmental immaturity and potential steroidinduced modulation of neuronal networks [10]. Additional modulators of excitability include electrolyte disturbances, medication exposures, and micronutrient deficits; deficiencies of iron, zinc, vitamin B12, folate, selenium, calcium, and magnesium have all been associated with increased febrile seizure incidence, plausibly through effects on neurotransmitter synthesis, mitochondrial function, or ion channel behavior [5]. The proximate infectious

precipitants of febrile seizures are heterogeneous, but viral etiologies predominate. Approximately four out of five febrile seizures coincide with viral rather than bacterial infections, underscoring the central role of viral pathogens that provoke robust systemic and central inflammatory responses [11]. Human herpesvirus 6 (roseolovirus) is the single most frequently implicated agent in children younger than two years in North America and Europe, detected in up to one-third of affected infants; infections with roseolovirus are notable for their association with higher rates of complex features, recurrence, and febrile status epilepticus in some series [12][13][14]. Geographic variation in viral associations is evident; for example, influenza A has been commonly linked to febrile seizures in multiple Asian cohorts. Other viral and bacterial agents reported in association with febrile convulsions include human herpesvirus 7, coronavirus HKU1, adenovirus, respiratory syncytial virus, cytomegalovirus, and enteric pathogens such as Shigella, as well as herpes simplex virus. The mechanistic pathways likely involve cytokinemediated lowering of seizure thresholds, feverinduced changes in neuronal membrane properties, and direct or indirect effects of viral products on synaptic function.


Immunization has been temporally associated with a small and transient elevation in febrile seizure risk for certain vaccine preparations and schedules. Risk windows vary by vaccine type, but increased incidence has been observed in the days following administration of combination vaccines as diphtheria-tetanus-acellular pertussisinactivated poliovirus–Haemophilus influenzae type b (DTaP-IPV-Hib), measles-mumps-rubella-varicella (MMRV), conjugate pneumococcal vaccines, and selected formulations of inactivated influenza vaccines. The absolute risk increment is modest; population-based studies indicate that concomitant administration of multiple vaccines can raise the estimated excess risk to approximately 30 additional febrile seizures per 100,000 vaccine recipients when vaccines such as IIV3, pneumococcal conjugate vaccine, and DTaP-containing vaccines are given simultaneously compared with separate-day administration [15]. This incremental risk must be weighed against the substantial benefits of vaccination in preventing severe infectious disease and its complications, and it supports informed scheduling decisions rather than wholesale avoidance of immunization. In summary, the etiology of febrile seizures is multifactorial, arising from the interplay of genetic susceptibility, developmental neurobiology, host micronutrient status, and febrile infectious triggers—predominantly viral agents. Peak febrile temperature, rather than the tempo of onset, appears especially important in precipitating convulsions, and infant neurodevelopmental stage critically shapes vulnerability. Understanding these determinants informs risk stratification, anticipatory guidance for caregivers, and the rational interpretation of postinfectious and postvaccination seizure events in clinical practice [15].

Epidemiology

Febrile seizures represent the most frequent neurologic event in early childhood, typically affecting children between six months and five years of age. They constitute the most prevalent form of this seizure during developmental demonstrating a slight male predominance, with an observed male-to-female ratio of approximately 1.6:1. Epidemiologic data indicate that the overall incidence of febrile seizures ranges from 2% to 5% among children in the United States and Europe, with the highest occurrence observed between 12 and 18 months of age [16]. This peak corresponds to a phase of heightened susceptibility when the developing brain exhibits increased neuronal excitability and immune system responses are still maturing. Temporal and geographic variations in incidence have been documented. Studies conducted in Japan, Finland, and the United States reveal consistent seasonal and diurnal trends, with febrile seizures occurring more frequently during the winter months and in the afternoon hours [16]. These patterns likely reflect the increased prevalence of viral respiratory infections during colder seasons and the influence of circadian body temperature fluctuations on seizure threshold. In terms of recurrence, a considerable proportion of affected children experience more than one episode. While many have a single isolated event, approximately 30% of children exhibit recurrent febrile seizures within the early years of life [16]. The likelihood of recurrence appears to be influenced by several factors, including a younger age at first seizure, a family history of febrile seizures, and the presence of lower-grade fever at onset. Collectively, these epidemiological findings emphasize the clinical relevance of febrile seizures as a common, often selflimited condition within pediatric populations.

Pathophysiology

The underlying pathophysiology of febrile seizures remains incompletely understood, yet it is believed to involve a multifactorial interaction between genetic susceptibility, neurodevelopmental immaturity, and environmental influences. The immature brain demonstrates heightened excitability due to incomplete development of inhibitory increased neurotransmission and neuronal responsiveness to external stimuli. Fever acts as a potent physiological stressor that further enhances neuronal excitation, reducing the seizure threshold and predisposing susceptible children to convulsive events. This neurophysiologic vulnerability helps explain why febrile seizures predominantly occur in children under three years of age, during the period when the central nervous system (CNS) is still undergoing critical maturation [17]. Genetic factors play an important role in determining individual susceptibility. Studies have identified familial clustering and higher concordance rates among monozygotic twins, suggesting polygenic autosomal dominant inheritance with variable penetrance. Mutations affecting ion channels, neurotransmitter receptors, or synaptic regulation are proposed contributors to abnormal excitability. These alterations mav amplify temperature-induced changes in neuronal firing patterns, promoting seizure onset even with modest increases in body temperature. Fever-related biochemical changes further influence neuronal activity. Elevated body temperature can increase cytokine production, alter blood-brain barrier permeability, and modify electrolyte balance, particularly sodium and calcium fluxes, which affect membrane stability and synaptic transmission. The combined effects of these mechanisms lead to transient hyperexcitability in cortical and subcortical neuronal networks, precipitating seizure activity. Overall, febrile seizures arise from an intricate interplay between developmental neurobiology, genetic predisposition, fever-mediated and physiological responses, reflecting the unique vulnerability of the developing CNS to thermal and inflammatory stressors [17].

Figure-2: Pathophysiology of febrile seizures. **History and Physical**

A meticulous clinical history is foundational to the assessment of a child who has experienced a febrile convulsion. Caregiver narration is often the primary information source, and clinicians must solicit a structured account of the events preceding, during, and after the episode. Key elements include the chronology of fever onset and any prodromal symptoms, the precise temporal relation between fever and motor phenomena, the detailed semiology of the convulsion, the estimated duration of motor activity, and the nature and duration of postictal recovery. Because vaccine related fevers and recent exposures to infectious agents can be temporally associated with febrile seizures, immunization history and recent contact with ill persons must be documented. Family history of febrile or afebrile seizures and

neurodevelopmental disorders is essential because it alters recurrence risk and the probability of a genetic about predisposition. Information baseline development, prior neurologic events, chronic medical conditions, current medications, and potential toxic exposures further refines differential diagnosis and helps determine whether the event is an isolated febrile seizure or a manifestation of another disorder [5][4]. Careful characterization of the convulsive event differentiates simple febrile seizures from complex presentations and guides immediate management and diagnostic testing. Simple febrile seizures typically manifest as a single generalized tonic clonic episode within a 24 hour window, with duration under 15 minutes and rapid return to baseline. Complex febrile seizures demonstrate one or more of the following features, focality, prolonged duration equal to or exceeding 15 minutes, or recurrence within 24 hours. A prolonged event that persists or recurrent seizures that cluster require urgent attention because they increase the likelihood of complications and the need for anticonvulsant therapy. Observations such as unilateral motor predominance, asymmetric facial movement, persistent focal deficits after the event, or prolonged impairment of consciousness suggest focal pathology or secondary causes and mandate a lower threshold for neuroimaging and consultation. The presence of respiratory compromise, evanosis, ocular deviation, tongue biting, urinary incontinence, or sustained autonomic disturbance should be recorded because these signs inform acute supportive care and subsequent triage decisions [5][4].

The physical examination after a convulsion must proceed systematically and with serial reassessments. Vital signs should be monitored for trends that indicate ongoing systemic instability or evolving infectious processes. Temperature measurement should be interpreted in the context of antipyretic administration and the timing of seizure onset. A focused search for sources of fever is obligatory. Otoscopic inspection for otitis media, oropharyngeal examination for streptococcal or viral pharyngitis, inspection of the skin for rash or petechiae, abdominal palpation for signs of enteric infection, and evaluation of the urinary system for dysuria or hematuria are all components of the infectious survey. Neck stiffness, a bulging fontanelle, meningeal signs, or progressive lethargy elevate concern for central nervous system infection and prompt expedited cerebrospinal fluid evaluation in appropriate clinical contexts [5][4]. Neurologic evaluation should establish whether the child has returned to baseline function or if persistent neurologic deficits exist. Assessment of level of consciousness, spontaneous movement, cranial nerve function, motor strength, tone, coordination, and reflexes should be undertaken. Funduscopic examination may reveal papilledema and signal raised intracranial pressure. Examination for asymmetry, focal weakness, or new abnormal movements provides critical data that

distinguishes benign postictal states from structural or infectious etiologies. Dermatologic inspection for stigmata of neurocutaneous syndromes such as tuberous sclerosis or Sturge Weber syndrome is important because these conditions carry both diagnostic and prognostic implications for seizure recurrence and neurologic development [5][4].

Figure-3: Febrile Seizures Symptoms.

Clinicians must maintain a high index of suspicion for alternative diagnoses when the history or examination departs from classical febrile seizure features. Conditions that may mimic febrile seizures include breath holding spells, syncope, acute dystonic reactions, metabolic disturbances, head trauma, ingestions, and primary epileptic syndromes that coincidentally present with fever. Red flags that warrant expanded evaluation include first seizures in children outside the typical age range, focal onset or persistent focal deficits, failure to regain baseline mental status within the expected postictal interval, repeated febrile events within a short time frame, signs of meningeal irritation, or any clinical feature suggesting intracranial pathology [5][4]. The history and physical examination also inform the need for ancillary testing and the urgency of intervention. In children with an unremarkable neurologic exam after a brief generalized seizure and clear alternative source of fever, extensive testing can often be deferred and outpatient observation with parental education is appropriate. Conversely, prolonged seizures, focal signs, concerning neurologic examination, or clinical indicators of meningitis or encephalitis require expedited laboratory and neuroimaging studies, and in many cases lumbar puncture, to exclude treatable causes. These decisions should be individualized and guided by clinical judgment, institutional protocols, and the evolving status of the child, with the overarching goal of directing timely treatment when indicated while avoiding unnecessary invasive testing in low risk scenarios [5][4]. Effective communication with caregivers is a central component of the postictal encounter. Clinicians should elicit witness accounts, explain the likely diagnosis and immediate plan, provide clear instructions for home observation and safety during potential recurrence, and discuss indications for urgent return to care. Counseling should address the generally favorable prognosis for simple febrile seizures, the signs that should prompt re-evaluation, and strategies to reduce caregiver anxiety, including practical guidance on seizure first aid and fever management. Documenting the history and examination in a structured manner supports subsequent follow up and informs decisions regarding neurology referral, electroencephalography, or genetic evaluation when indicated by recurrent or atypical presentations [5][4].

Evaluation

Evaluation of febrile seizures focuses on distinguishing benign, self-limited presentations from those requiring further diagnostic investigation. In most cases, simple febrile seizures—defined by brief. generalized convulsions with full recovery and no recurrence within 24 hours—do not require additional laboratory or imaging studies. This approach reflects the benign and self-limiting nature of simple febrile seizures and the lack of evidence suggesting benefit from extensive testing in this population. Clinical reassurance and parental education are central to management, with evaluation directed instead toward identifying the underlying cause of fever rather than neurological pathology [4]. In contrast, complex febrile seizures necessitate a more detailed diagnostic workup because they may reflect underlying structural, metabolic, or infectious abnormalities. Complex features include seizure duration exceeding 15 minutes, focal onset or postictal findings, or recurrence within a 24-hour period. In these cases, laboratory investigations such as a complete blood count, metabolic panel, and urinalysis are appropriate, particularly when dehydration, poor oral intake, vomiting, or diarrhea is present. These assessments help identify electrolyte imbalances, metabolic derangements, or systemic infections that can either precipitate or complicate seizure episodes. Additional evaluation through an electroencephalogram (EEG) may be indicated to assess ongoing epileptiform activity, particularly if seizures are prolonged, focal, or followed by incomplete neurological recovery. EEG findings rarely alter immediate management but may assist in prognostication and future risk stratification for epilepsy [3][18].

Hospital admission is often warranted for patients with complex febrile seizures to allow observation and serial neurological assessments. Admission enables clinicians to monitor for recurrent seizures, assess hydration status, and complete additional testing as needed. Observation is also advisable for patients with prolonged postictal states or uncertain neurological recovery, as these presentations increase the likelihood of alternative diagnoses such as meningitis, encephalitis, or structural brain abnormalities. Lumbar puncture remains a crucial diagnostic consideration in the evaluation of febrile seizures when central nervous system (CNS) infection is suspected. Although not

routinely required for children with simple febrile seizures who recover rapidly, lumbar puncture should be performed when meningeal signs, prolonged altered consciousness, or focal neurological deficits are present. It is also indicated for infants younger than 12 months who have not been fully immunized against *Streptococcus pneumoniae* or *Haemophilus influenzae* type B, given their higher risk for bacterial meningitis. Similarly, lumbar puncture should be considered when seizures occur more than 48 hours after the onset of fever or in patients who have recently received antibiotic therapy, as antibiotics can mask the clinical signs of meningitis and complicate diagnosis [5].

Neuroimaging studies, including computed tomography (CT) and magnetic resonance imaging (MRI), are not routinely indicated in the evaluation of febrile seizures but may be necessary in selected cases. Imaging is warranted when clinical findings suggest increased intracranial pressure, focal neurological deficits, structural brain abnormalities, macrocephaly, or a history of significant head trauma. MRI is preferred over CT when available, as it provides superior visualization of cortical and subcortical structures without ionizing radiation exposure. In children presenting with complex febrile seizures and abnormal neurological findings, imaging helps exclude intracranial infections, malformations, or congenital anomalies that could contribute to seizure pathophysiology [5]. In addition to the above, ancillary testing should be individualized based on the patient's presentation and clinical stability. Blood cultures, chest radiography, or stool studies may be indicated to identify systemic infectious sources, especially in the absence of a clear focus of infection. Serum glucose and electrolyte levels are important in children with prolonged seizures, as hypoglycemia and hyponatremia are potential seizure triggers. In selected cases, particularly when seizures are refractory to initial management or associated with persistent neurological abnormalities, consultation with pediatric neurology is appropriate to guide further diagnostic steps and therapeutic decisions.

The evaluation process should emphasize distinguishing febrile seizures from other causes of convulsions associated with fever. Differential diagnoses include central nervous system infections such as meningitis and encephalitis, metabolic disorders, structural brain lesions, and toxin exposures. Key clinical clues that support a diagnosis of febrile seizure include the presence of generalized tonic-clonic activity, short duration, rapid postictal recovery, and absence of focal neurological signs after the event. Conversely, atypical features—such as focal motor activity, prolonged altered consciousness, repeated seizures without full recovery, or deficits—should neurological prompt broader investigation and specialist referral. Ultimately, the diagnostic approach to febrile seizures should balance thoroughness with clinical prudence.

investigation can expose children to unnecessary procedures and anxiety without improving outcomes, while underassessment may delay the recognition of serious underlying pathology. Clinicians must rely on a combination of detailed history, focused physical examination, and selective testing to achieve accurate diagnosis and safe management. Clear documentation of seizure characteristics, associated symptoms, and clinical findings is essential for guiding future care and counseling families about prognosis and recurrence risk. Through a rational and evidence-based evaluation strategy, clinicians can differentiate benign febrile seizures from conditions requiring urgent intervention, ensuring that children receive appropriate care while minimizing unnecessary diagnostic interventions [4][5][18].

Treatment / Management

Management of febrile seizures is principally supportive and directed at identifying and treating the precipitating febrile illness rather than altering the natural history of seizure recurrence. For children who experience a simple febrile seizure and promptly return to their neurologic baseline, clinical evidence does not support routine initiation of continuous antiseizure medication or prophylactic regimens; such interventions expose the child to medication adverse effects without demonstrable long-term benefit. Antipyretic therapy, although useful for symptomatic relief and caregiver reassurance, has not been shown to reduce the risk of recurrent febrile convulsions during the same illness or to prevent future events, and therefore should not be used for seizure prophylaxis alone [19]. In children with recurrent events, prevention strategies remain limited. Intermittent benzodiazepine administration at the time of febrile illness has been evaluated as a short-term bridging measure; while such regimens can reduce the likelihood of seizure recurrence during a febrile episode, their use is constrained by sedative adverse effects and impaired daily functioning when employed repeatedly. Consequently, routine prophylactic benzodiazepine administration is not recommended for most patients. Long-term antiseizure therapy likewise is discouraged for the majority of children with febrile seizures because the marginal reduction in seizure recurrence does not justify the risk of chronic drug toxicity and cognitive or behavioral adverse effects [20][21].

Acute seizure management follows standard convulsive care algorithms. A convulsion that persists beyond five minutes should prompt escalation to pharmacologic therapy to abort ongoing seizure activity and to prevent progression to status epilepticus. Intravenous benzodiazepines such as lorazepam are first-line agents when intravenous access is available. When intravenous access is not feasible, rectal diazepam or intranasal midazolam provide effective and practical alternatives for community or prehospital use and are widely endorsed

as rescue medications for prolonged febrile seizures [21][22].

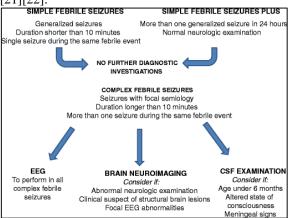


Figure-4: Management of febrile seizures.

Children who experience prolonged seizures or febrile status epilepticus require expedited transport to a facility capable of advanced airway management continuous monitoring; in-hospital commonly includes further anticonvulsant escalation, hemodynamic support, and targeted evaluation for underlying etiologies. Postictal disposition and the need for hospitalization depend on clinical features: prolonged recovery, focal neurologic findings, ongoing instability, or concern for central nervous system infection warrant admission for observation and diagnostic evaluation. In contrast, a wellappearing child with a brief generalized febrile seizure and an identifiable extracranial source of fever may be safely observed and discharged with caregiver education and an appropriate follow-up plan [4][3][18].

Caregiver education is an essential element of management. Families should be taught basic seizure first aid, including maintaining airway patency, placing the child in a lateral recovery position, avoiding insertion of objects into the mouth, and timing the seizure. Clear guidance about when to activate emergency medical services—such as seizures lasting longer than five minutes, recurrent convulsions without recovery, respiratory compromise, or cyanosis—reduces delays in acute care. For selected children at high risk of recurrent prolonged seizures, provision of a written action plan and prescription for a rescue benzodiazepine to be administered by caregivers during prolonged convulsions may be appropriate after shared decisionmaking with pediatric neurology Nonpharmacologic measures aimed solely temperature reduction—such as tepid sponging, fanning, or removal of clothing-do not prevent seizure recurrence and should be regarded primarily as comfort measures. Management priorities remain the identification and treatment of the underlying febrile illness, judicious use of antipyretics for symptom control, timely intervention for prolonged seizures with benzodiazepines, and avoidance of chronic antiseizure prophylaxis except in rare, carefully selected circumstances. Coordination with pediatric neurology for recurrent, complex, or atypical presentations supports individualized assessment and consideration of further diagnostic modalities or specialized interventions when clinically indicated [23].

Differential Diagnosis

The differential diagnosis of febrile seizures encompasses several pediatric conditions that can present with seizure-like or paroxysmal events during febrile illnesses. Accurate differentiation relies on a detailed clinical history, physical examination, and, when indicated, focused diagnostic testing. Breathholding spells are common in toddlers and may mimic seizures but are triggered by emotional stimuli or frustration rather than fever. These episodes often involve brief apnea, cyanosis, and transient loss of consciousness, followed by rapid recovery without postictal confusion. Central nervous system infections such as meningitis or encephalitis are critical considerations, as they can produce seizures in the presence of fever but usually present with additional findings such as altered mental status, persistent lethargy, meningeal signs, or focal neurological deficits. A lumbar puncture is indicated when infection is suspected to confirm or exclude these diagnoses. Drug-induced seizures may result from accidental ingestion or adverse reactions to medications such as isoniazid or theophylline. A careful medication and exposure history helps rule out these possibilities. Febrile delirium manifests as agitation, confusion, or hallucinations during fever without actual seizure activity, often in older children. Febrile myoclonus is characterized by brief, repetitive muscle jerks during fever that do not cause loss of consciousness and are distinct from generalized tonicclonic activity.

Febrile infection-related epilepsy syndrome (FIRES) is a rare but severe disorder involving prolonged or recurrent seizures after a febrile illness, often progressing to refractory status epilepticus. Differentiation from benign febrile seizures is essential due to its grave prognosis. Generalized or genetic epilepsy with febrile seizures plus (GEFS+) represents a familial epilepsy spectrum in which febrile seizures persist beyond early childhood or evolve into afebrile seizures. A family history of epilepsy or recurrent afebrile seizures supports this diagnosis. Metabolic disturbances, particularly hyponatremia or hypoglycemia, can lower seizure thresholds during fever and should be ruled out through laboratory testing when clinical suspicion exists. Shaking chills or rigors associated with rapid temperature elevation may be mistaken for seizures but lack eye deviation, tonic-clonic movements, or postictal confusion. Ultimately, distinguishing a simple febrile seizure from other causes requires correlation of seizure characteristics, fever pattern,

neurological status, and laboratory findings. Tonicclonic seizures unrelated to fever or accompanied by focal findings suggest an alternative or underlying epileptic disorder requiring further neurological assessment.

Prognosis

Febrile seizures generally confer a favorable neurologic outlook and are not associated with enduring cognitive impairment. The preponderance of through affected children proceed typical developmental trajectories without deficits attributable to the seizure event. Recurrence is relatively common, however, and must be addressed in counseling families. Approximately one third of children who experience an initial febrile seizure will have at least one subsequent episode. The probability of recurrence is highest when the first seizure occurs in infancy. Children whose initial event takes place before 12 months of age have nearly a 50 percent likelihood of a second seizure within the first year after the index event, whereas the risk decreases to about 30 percent over the subsequent year. Predictors that increase the probability of recurrence include younger age at first seizure, a positive family history of febrile convulsions, lower peak temperature at the time of the seizure, and a brief interval between onset of fever and seizure occurrence. The presence of complex features does not uniformly predict a higher recurrence rate, and these characteristics should be weighed against other clinical factors when estimating individual risk.

The long term risk of developing an afebrile epileptic disorder after a febrile seizure is low for most children. Estimates indicate that roughly one to two percent of children with simple febrile seizures subsequently receive a diagnosis of epilepsy, a figure only modestly greater than the background incidence in the general pediatric population. The risk rises when additional adverse prognostic indicators are present. Children who exhibit complex febrile seizures, who experience their first febrile seizure at a particularly young age, who undergo seizures of prolonged duration, who demonstrate preexisting neurodevelopmental abnormalities, who have epileptiform findings on electroencephalography, or who possess a family history of epilepsy collectively face an elevated cumulative risk that may range from two to ten percent depending on the number and severity of these factors [24]. This stratified risk model informs follow up decisions and the threshold for referral. Neurocognitive attributable to a single febrile seizure are not supported by the evidence. Studies comparing affected children with matched controls show no consistent association between a solitary febrile convulsion and later learning disabilities, reductions in measured intelligence, behavioral pathology, or impairments in executive function. Recurrent febrile seizures, however, have been associated in some cohorts with subtle language delay, notably in early vocabulary acquisition, which may warrant targeted developmental surveillance and

early intervention in children with multiple episodes [5]. The absence of a broad deleterious effect on cognition should be emphasized when counseling families, while also acknowledging the need for individualized monitoring when recurrence or other risk factors are present. Clinical implications of the prognostic data include a measured approach to investigation and intervention. For children with isolated simple febrile seizures and normal neurologic examinations. conservative management education and anticipatory guidance is appropriate. For those with multiple risk factors for epilepsy or with complex or prolonged events, timely referral to pediatric neurology, consideration electroencephalography, and structured developmental surveillance are reasonable steps to optimize outcomes. Communication with caregivers should balance reassurance about the generally benign course with clear information about signs that warrant prompt reassessment, including focal neurologic deficits, prolonged postictal recovery, or recurrent clustered seizures [24][5].

Complications

Although the vast majority of febrile seizures are brief and self-limited, clinicians must recognize a spectrum of rare but clinically significant sequelae that may follow these events. Mortality is exceedingly uncommon and usually reflects an underlying catastrophic process rather than direct causation by a typical febrile convulsion. A small subset of children who experience febrile seizures will later be diagnosed with epilepsy, particularly when the initial event is complex, prolonged, or accompanied by preexisting neurodevelopmental abnormality. The probability of subsequent unprovoked seizures increases in the presence of risk factors such as focal neurologic signs, abnormal electroencephalographic findings, a family history of epilepsy, or very early age at first presentation. Encephalopathic outcomes are rare but have been described in the context of prolonged febrile status epilepticus or in syndromes in which fever precipitates refractory epileptic activity. In such circumstances, secondary neuronal injury and inflammatory cascades can produce lasting cognitive and motor impairment. Developmental disorders including autism spectrum disorder have been reported with higher prevalence among children who experienced complicated febrile events, although causal inference is limited by confounding variables possibility of shared underlying neurobiological vulnerability. Intellectual disability may emerge in selected cohorts, most often when febrile seizures occur as part of a broader constellation structural brain abnormalities or genetic encephalopathies [24].

Behavioral and attentional disorders, including attention deficit hyperactivity disorder and tic disorders such as Tourette syndrome, have shown modest associations with histories of febrile seizure in some epidemiologic series. These associations are not

universal and appear to be concentrated among children with recurrent or complex febrile seizures or those with antecedent neurodevelopmental concerns. Respiratory and atopic comorbidities such as allergic rhinitis and asthma are observed more frequently in some populations with febrile seizures, possibly reflecting overlapping immunologic susceptibilities or shared environmental exposures that predispose to both febrile illnesses and atopic disease. Risk stratification is therefore fundamental. Children with isolated, brief generalized febrile seizures and normal development carry minimal long term risk and require only anticipatory guidance and targeted follow up. By contrast, those with prolonged seizures, focal neurologic features, recurrent clustering, abnormal neurologic baseline, or concerning family history merit prompt neurologic evaluation, tailored investigations, and closer developmental surveillance. Early identification of atypical or progressive features permits timely intervention, which can mitigate adverse outcomes and direct appropriate rehabilitative and educational resources when needed [24].

Consultations

Specialist consultation is essential in the comprehensive management of febrile seizures, particularly in cases where diagnostic uncertainty or clinical complexity exists. Pediatricians often serve as the primary coordinators of care, responsible for assessing the child's general health, identifying the source of fever, and determining whether the seizure is simple or complex. They also play a key role in parental education, ensuring caregivers understand the benign nature of most febrile seizures and the appropriate response to future episodes. Neonatologists are consulted when febrile seizures occur in infants younger than six months or in premature neonates, where differential diagnoses such as metabolic disturbances, central nervous system infections, or congenital disorders must be carefully excluded. Their expertise is critical for evaluating immature neurological responses and managing infants with additional comorbidities. Neurologists provide advanced assessment in complex, prolonged, or recurrent febrile seizures. They interpret electroencephalograms, evaluate neurodevelopmental status, and determine the need for neuroimaging or long-term follow up. Their involvement is also important in cases suggestive of evolving epilepsy or structural brain abnormalities. Interdisciplinary collaboration between these specialists ensures accurate diagnosis, effective management, and appropriate family counseling, thereby reducing anxiety, unnecessary investigations, and the risk of complications [24].

Other Issues

Clinical characterization of febrile seizures is central to decision making and prognostication. Simple febrile seizures typically present as a single generalized tonic-clonic event within a 24-hour window, involving synchronous bilateral motor activity that commonly engages facial musculature and respiratory-related musculature and terminates within 15 minutes. Postictal recovery after a simple event is rapid and usually limited to brief somnolence. By contrast, complex febrile seizures demonstrate one or more complicating features: focal onset or lateralizing motor phenomena, prolonged duration equal to or exceeding 15 minutes, or recurrence of convulsive episodes within 24 hours. Complex events frequently produce transient focal neurological deficits in the immediate postictal interval, such as unilateral paresis consistent with Todd paralysis, and they demand a lower threshold for diagnostic investigations and inpatient observation because of the greater probability of an underlying structural or infectious process. Associated manifestations that may accompany either simple or complex febrile seizures include loss of consciousness, oral foaming, transient respiratory compromise, and central cyanosis. Documentation of these features is important because they inform immediate supportive care and influence triage priorities. The clinician must differentiate between benign manifestations attributable to transient hypoventilation or autonomic disturbance and signs that suggest evolving intracranial pathology. Persistent alteration of consciousness, asymmetric motor findings that do not resolve in the expected postictal interval, or progressive neurologic decline should prompt urgent neurodiagnostic evaluation [4].

Diagnostic strategy is contingent on the seizure phenotype and the clinical examination. For children whose history and neurologic examination are consistent with a simple febrile seizure and who return promptly to baseline, no routine neuroimaging, electroencephalography, or extensive laboratory testing is warranted; management in such cases focuses on identification and treatment of the febrile source and caregiver education [4]. Conversely, a complex febrile seizure mandates targeted assessment to exclude structural lesions, metabolic derangements, and central nervous system infection. Standard investigations may include neuroimaging when indicated by focal neurological findings or signs of raised intracranial pressure, laboratory studies such as a complete blood count and metabolic panel when dehydration, poor oral intake, or gastrointestinal symptoms are present, and an electroencephalogram to characterize interictal epileptiform activity when recurrent or focal events occur. Some presentations with complex features require hospital admission for observation, serial neurologic assessment, and completion of diagnostic testing. Therapeutic interventions are primarily supportive for both simple and complex febrile seizures, with escalation of care reserved for prolonged events. There is no evidence that routine anticonvulsant prophylaxis or aggressive antipyretic regimens alter long-term outcomes or prevent recurrence, and such interventions are therefore not recommended for most patients. In the acute setting, however, seizures that persist beyond five minutes should be treated promptly with benzodiazepines. Intravenous lorazepam is preferred when IV access is available because of predictable pharmacokinetics and efficacy. When intravenous access cannot be obtained, rectal diazepam or intranasal midazolam are effective rescue options that can be administered by trained caregivers or prehospital personnel [21][22]. Children who experience febrile status epilepticus or recurrent prolonged seizures require urgent transfer to an acute care setting for airway management, continued anticonvulsant therapy, and evaluation complications.

Follow-up care after a febrile seizure is individualized. Most patients with a single, brief generalized febrile seizure and normal neurologic status need outpatient follow-up with their primary pediatrician and reassurance. Families benefit from explicit education about seizure first aid, indications for emergency evaluation, and the generally favorable prognosis of simple febrile seizures. For children with complex features, recurrent episodes, abnormal neurologic examination, or concerning family history, referral to pediatric neurology is appropriate to consider further testing, longitudinal monitoring, and discussion of seizure recurrence risk. Coordination between emergency clinicians, primary care providers. and neurologists optimizes continuity of care and ensures timely intervention when clinical trajectories change [21][22].

Enhancing Healthcare Team Outcomes

Effective management of febrile seizures depends on an organized interprofessional structure that integrates acute clinical care, diagnostic capacity, caregiver education, and longitudinal follow-up. The core team should include emergency physicians, pediatricians, neonatologists as needed, pediatric neurologists, nursing staff, pharmacists, EEG technologists, laboratory personnel, and radiologists. Each discipline contributes specific competencies: emergency clinicians stabilize the child and initiate rescue therapy when required; pediatricians provide continuity of care and outpatient follow-up; neurologists advise on complex diagnostics and longterm risk stratification; nurses execute bedside monitoring, administer medications, and instruct families in first aid; pharmacists ensure appropriate drug selection, dosing, and counseling; and diagnostic staff facilitate timely EEG, imaging, and laboratory Interprofessional teamwork unnecessary variation in care and aligns interventions evidence-based practice. Protocols that standardize assessment and management of febrile seizures improve safety and efficiency. These protocols should delineate criteria for lumbar puncture, imaging, hospital admission, and EEG referral; they should specify first-line rescue medication choices and dosing algorithms for different

age groups; and they should define documentation expectations for seizure semiology and postictal status. Implementation of such pathways shortens time to appropriate treatment for prolonged seizures, limits invasive testing when not indicated, and clarifies disposition decisions. Regular multidisciplinary case reviews and quality improvement projects promote adherence to best practices and identify system vulnerabilities [23][24][25].

Caregiver education constitutes a central function of the interprofessional team and materially affects utilization patterns and outcomes. Families commonly present to emergency services with alarm after witnessing a convulsion. Clear, concise education delivered by clinicians and reinforced by nursing staff reduces anxiety and decreases unnecessary emergency visits. Education should cover safe immediate responses during a convulsive event, indications for emergency care—such as seizures lasting longer than five minutes, repeated seizures without recovery, respiratory compromise, or focal neurological changes—and the limits of antipyretic measures in preventing recurrence. Pharmacist counseling complements this education by advising on appropriate antipyretic dosing, warning against aspirin use in children, and explaining indications for prescribed rescue benzodiazepines where indicated. Pharmacy engagement is also critical for ensuring safe and effective use of rescue medications. Pharmacists support dose calculation, prepare weight-based dosing charts, verify formulations suitable for intranasal or rectal administration, and counsel caregivers on storage and administration. They participate in protocol development to ensure medication availability in emergency departments and inpatient units and collaborate with nursing teams to verify competency in delivering nonparenteral routes of administration [23][24][25].

Strengthening multidisciplinary communication is essential. Shared electronic health records that document seizure characteristics, vaccine history, prior episodes, and discharge instructions facilitate continuity of care among primary providers specialists. Structured handoffs between emergency departments and inpatient teams, and between hospital and outpatient pediatric services, ensure reliable follow-up and appropriate scheduling neurology consultation when Telemedicine mechanisms can extend specialist input to remote or resource-limited settings, enabling earlier expert guidance for complex cases. Finally, public health and community engagement strategies complement clinical efforts. Educating daycare providers, school personnel, and community caregivers about febrile seizure recognition and immediate response can reduce morbidity associated with delayed intervention. Public health messaging that accurately communicates the benign nature of most febrile seizures, while instructing when to seek urgent care, helps prevent reliance on unproven or harmful remedies and fosters timely presentation for those who need it. In sum, optimal outcomes for children with febrile seizures arise from integrated, protocolized care delivered by an interprofessional team that emphasizes prompt acute treatment of prolonged seizures, judicious diagnostic evaluation for complex presentations, robust caregiver education, and coordinated follow-up. This system-level approach minimizes unnecessary interventions, supports family confidence, and ensures that children at higher risk receive the specialized evaluation and monitoring they require [24][25].

Conclusion:

In conclusion, the management of febrile seizures requires a calm, evidence-based, and systematic approach to ensure optimal outcomes and alleviate caregiver distress. The fundamental principle is the accurate differentiation between simple and complex febrile seizures, as this distinction directly guides the extent of the diagnostic workup and subsequent management. For the vast majority of children who experience a simple febrile seizure characterized by a brief, generalized event and rapid return to baseline—extensive testing is unnecessary. The focus should instead be on identifying and treating the source of the fever and providing comprehensive reassurance and education to the family about the condition's excellent prognosis. For complex presentations, which include prolonged, focal, or recurrent seizures, a more rigorous evaluation is imperative to rule out serious conditions such as central nervous system infections or structural abnormalities. In these cases, interventions such as rescue benzodiazepines are critical for terminating prolonged seizure activity and preventing progression to status epilepticus. Ultimately, the cornerstone of effective care is a coordinated, interprofessional effort that spans from the emergency setting to primary care follow-up. This team-based approach, combined with clear, empathetic communication and education for caregivers on seizure first aid and when to seek emergency help, ensures that children are managed safely, unnecessary procedures are avoided, and family anxiety is significantly reduced.

References:

- 1. Sawires R, Buttery J, Fahey M. A Review of Febrile Seizures: Recent Advances in Understanding of Febrile Seizure Pathophysiology and Commonly Implicated Viral Triggers. Front Pediatr. 2021;9:801321.
- Pavone P, Corsello G, Ruggieri M, Marino S, Marino S, Falsaperla R. Benign and severe earlylife seizures: a round in the first year of life. Ital J Pediatr. 2018 May 15;44(1):54.
- 3. Auvin S, Antonios M, Benoist G, Dommergues MA, Corrard F, Gajdos V, Gras Leguen C, Launay E, Salaün A, Titomanlio L, Vallée L, Milh M. [Evaluating a child after a febrile seizure: Insights

- on three important issues]. Arch Pediatr. 2017 Nov;24(11):1137-1146.
- 4. Smith DK, Sadler KP, Benedum M. Febrile Seizures: Risks, Evaluation, and Prognosis. Am Fam Physician. 2019 Apr 01;99(7):445-450.
- 5. Leung AK, Hon KL, Leung TN. Febrile seizures: an overview. Drugs Context. 2018;7:212536.
- 6. Leung AK, Robson WL. Febrile seizures. J Pediatr Health Care. 2007 Jul-Aug;21(4):250-5.
- 7. MILLICHAP JG. Studies in febrile seizures. I. Height of body temperature as a measure of the febrile-seizure threshold. Pediatrics. 1959 Jan;23(1 Pt 1):76-85.
- 8. MILLICHAP JG, MADSEN JA, ALEDORT LM. Studies in febrile seizures. V. Clinical and electroencephalographic study in unselected patients. Neurology. 1960 Jul;10:643-53.
- 9. Kumari PL, Rajamohanan K, Krishnan ASA. Risk Factors of First Episode Simple Febrile Seizures in Children Aged 6 Month to 5 Year: A Case Control Study. Indian Pediatr. 2022 Nov 15;59(11):871-874.
- Tu YF, Wang LW, Wang ST, Yeh TF, Huang CC.
 Postnatal Steroids and Febrile Seizure
 Susceptibility in Preterm
 Children. Pediatrics. 2016 Apr;137(4)
- 11. Yousefichaijan P, Eghbali A, Rafeie M, Sharafkhah M, Zolfi M, Firouzifar M. The relationship between iron deficiency anemia and simple febrile convulsion in children. J Pediatr Neurosci. 2014 May;9(2):110-4.
- 12. Hall CB, Long CE, Schnabel KC, Caserta MT, McIntyre KM, Costanzo MA, Knott A, Dewhurst S, Insel RA, Epstein LG. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N Engl J Med. 1994 Aug 18;331(7):432-8.
- 13. Epstein LG, Shinnar S, Hesdorffer DC, Nordli DR, Hamidullah A, Benn EK, Pellock JM, Frank LM, Lewis DV, Moshe SL, Shinnar RC, Sun S., FEBSTAT study team. Human herpesvirus 6 and 7 in febrile status epilepticus: the FEBSTAT study. Epilepsia. 2012 Sep;53(9):1481-8.
- 14. Hayakawa I, Miyama S, Inoue N, Sakakibara H, Hataya H, Terakawa T. Epidemiology of Pediatric Convulsive Status Epilepticus With Fever in the Emergency Department: A Cohort Study of 381 Consecutive Cases. J Child Neurol. 2016 Sep;31(10):1257-64.
- Duffy J, Weintraub E, Hambidge SJ, Jackson LA, Kharbanda EO, Klein NP, Lee GM, Marcy SM, Nakasato CC, Naleway A, Omer SB, Vellozzi C, DeStefano F., Vaccine Safety Datalink. Febrile Seizure Risk After Vaccination in Children 6 to 23 Months. Pediatrics. 2016 Jul;138(1)
- 16. Mikkonen K, Uhari M, Pokka T, Rantala H. Diurnal and seasonal occurrence of febrile seizures. Pediatr Neurol. 2015 Apr;52(4):424-7.

- 17. Sharawat IK, Singh J, Dawman L, Singh A. Evaluation of Risk Factors Associated with First Episode Febrile Seizure. J Clin Diagn Res. 2016 May;10(5):SC10-3.
- Silverman EC, Sporer KA, Lemieux JM, Brown JF, Koenig KL, Gausche-Hill M, Rudnick EM, Salvucci AA, Gilbert GH. Prehospital Care for the Adult and Pediatric Seizure Patient: Current Evidence-based Recommendations. West J Emerg Med. 2017 Apr;18(3):419-436.
- 19. Guedj R, Chappuy H, Titomanlio L, De Pontual L, Biscardi S, Nissack-Obiketeki G, Pellegrino B, Charara O, Angoulvant F, Denis J, Levy C, Cohen R, Loschi S, Leger PL, Carbajal R. Do All Children Who Present With a Complex Febrile Seizure Need a Lumbar Puncture? Ann Emerg Med. 2017 Jul;70(1):52-62.e6.
- Renda R, Yüksel D, Gürer YKY. Evaluation of Patients With Febrile Seizure: Risk Factors, Reccurence, Treatment and Prognosis. Pediatr Emerg Care. 2020 Apr;36(4):173-177.
- 21. Printz V, Hobbs AM, Teuten P, Paul SP. Clinical update: Assessment and management of febrile children. Community Pract. 2016 Jun;89(6):32-7; quiz 37.
- 22. Offringa M, Newton R, Nevitt SJ, Vraka K. Prophylactic drug management for febrile seizures in children. Cochrane Database Syst Rev. 2021 Jun 16;6(6):CD003031.
- 23. Subcommittee on Febrile Seizures; American Academy of Pediatrics. Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics. 2011 Feb;127(2):389-94.
- 24. Lee SH, Byeon JH, Kim GH, Eun BL, Eun SH. Epilepsy in children with a history of febrile seizures. Korean J Pediatr. 2016 Feb;59(2):74-9.
- Rasmussen NH, Noiesen E. [Parents of children with febrile convulsions. Multidisciplinary quality development of information and documentation]. Ugeskr Laeger. 2001 Feb 19;163(8):1103-6.
- Sperling MR, Bucurescu G, Kim B. Epilepsy management. Issues in medical and surgical treatment. Postgrad Med. 1997 Jul;102(1):102-4, 109-12, 115-8 passim