

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/20252199

Management of Penetrating Abdominal Trauma in the Emergency Department

Naif Qutaysh Alruwaili $^{(1)}$, Khaled Fayez Zaal Alanazi $^{(2)}$, Bader Abd Helal Alhazml $^{(1)}$, Horan Ali Alhazmi $^{(1)}$, Ali Eid Ali Altwarish $^{(3)}$, Faisal Ayidh Abdullah Alanazi $^{(1)}$, Sultan Fayadh Alanazi $^{(1)}$, Lutfi Qayyadh Mutairan Alhazmi $^{(1)}$, Sultan Dalish Alanazi , Tariq Mofareh Alanazi $^{(4)}$, Sami Tirad K Alruwaili $^{(1)}$, Naif Abdullah Alanazi $^{(1)}$, Raed Madallah Alanazi $^{(1)}$, Aed Salem Alhazmi $^{(5)}$

- (1) Saudi Red Crescent Authority, Saudi Arabia,
- (2) Saudi Red Crescent Authority, Emergency Medical, Saudi Arabia,
- (3) Saudi Red Crescent Authority, Northern Border Branch, Arar, Red Crescent Center, Tarif, Emergency Medicine Technician Specialization, Saudi Arabia,
- (4) Red Crissint, Sakaka, Saudi Arabia,
- (5) Saudi Red Crescent Authority In The Northern Borders Region Turaif Ambulance Center, Saudi Arabia

Abstract

Background: Penetrating abdominal trauma is a critical, high-stakes emergency and a leading cause of trauma-related mortality, particularly among young males in urban settings. It involves a breach of the abdominal wall by objects such as knives or bullets, posing immediate risks of life-threatening hemorrhage and hollow viscus perforation.

Aim: This article synthesizes the current principles for managing penetrating abdominal trauma in the emergency department, focusing on rapid triage, accurate evaluation, and decisive intervention to control hemorrhage and contamination, thereby reducing preventable deaths.

Methods: The review outlines a protocol-driven approach based on Advanced Trauma Life Support (ATLS) principles. Key diagnostic methods include the Focused Assessment with Sonography for Trauma (FAST) for unstable patients and computed tomography (CT) with intravenous contrast for stable patients to identify injury tracts and organ damage. Management pathways are stratified by patient physiology.

Results: Hemodynamically unstable patients require immediate surgical exploration. For stable patients, Selective Non-Operative Management (SNOM) is increasingly viable, supported by serial examinations and imaging. Minimally invasive techniques like laparoscopy and endovascular interventions (e.g., REBOA, angioembolization) have expanded treatment options, reduced the rate of non-therapeutic laparotomies and improving outcomes.

Conclusion: Successful management hinges on a disciplined, algorithm-based approach that integrates rapid assessment, judicious use of imaging, and a spectrum of interventions from observation to damage-control surgery. This systematic strategy is essential for optimizing survival and minimizing complications.

Keywords: Penetrating Abdominal Trauma, Hemorrhage Control, FAST Exam, Damage Control Surgery, Selective Non-Operative Management (SNOM), REBOA..

1. Introduction

Penetrating abdominal trauma represents a critical subset of traumatic injury that demands rapid, protocol-driven management across the prehospital and hospital continuum. Although less frequent than blunt mechanisms and reported to be declining in some regions, trauma as a whole persists as a leading global cause of mortality, keeping penetrating injuries squarely within the purview of high-stakes emergency care. For paramedics and emergency clinicians, the challenge begins at the scene: distinguishing patients who can be safely observed from those who require immediate life-saving intervention, while minimizing time to definitive hemorrhage control and mitigating

secondary injury. The epidemiologic footprint is substantial; abdominal involvement is estimated in roughly a quarter of trauma presentations worldwide, and penetrating mechanisms—disproportionately associated with weapon-related injury—carry elevated risks of hemorrhagic shock, sepsis, and multiorgan failure in both high- and low-resource settings. Within the abdomen, the small bowel, colon, liver, and major vascular structures are most vulnerable, and missed injuries—especially occult bowel and vascular lesions—remain a persistent driver of delayed diagnosis and adverse outcomes in emergency and paramedic practice settings [1]. The wounding pattern in penetrating trauma is governed by an interplay of

*Corresponding author e-mail: Naif67679@Hotmail.Com(Naif Qutaysh Alruwaili).

Receive Date: 30 September 2025, Revise Date: 30 October 2025, Accept Date: 1 November 2025

instrument characteristics, projectile anatomic entry site, and the viscoelastic properties of traversed tissues [2]. Low-velocity insults typically produce localized tract damage along a predictable path, whereas high-energy projectiles can create complex, non-linear injury patterns through temporary cavitation, yaw, and fragmentation, rendering external wounds a poor proxy for internal devastation [2]. Close-range gunfire further amplifies kinetic transfer and thermal effects, and secondary missiles—bone or bullet fragments—can seed additional trajectories with clinically silent but consequential injury [2]. For paramedics, an appreciation of these ballistic and biomechanical principles informs triage decisions, anticipation of concealed hemorrhage, and early communication with receiving trauma teams, thereby compressing time-to-activation for operative or endovascular control.

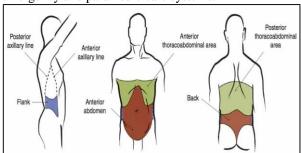
Anatomic zoning provides a practical scaffold for initial risk stratification. Injuries are commonly categorized into anterior, posterior/flank, and thoracoabdominal locations, with the posterior axillary line serving as a key landmark to separate anterior from posterior/flank wounds Thoracoabdominal trajectories—particularly those entering the upper abdominal quadrants below the fifth intercostal space—carry a heightened probability of diaphragmatic violation and dual-cavity injury, necessitating vigilance for concomitant thoracic compromise such as hemothorax, pneumothorax, or cardiac injury [3]. This framework facilitates targeted adjunct selection (eFAST, chest radiography, or early CT in hemodynamically stable patients), guides selective local wound exploration when appropriate, and shapes prearrival alerts for operative services [3]. Clinical severity in penetrating abdominal trauma spans a wide continuum, from superficial lacerations amenable to local care to catastrophic exsanguination and feculent peritonitis with rapidly evolving physiologic collapse [4]. Contemporary algorithms privilege physiologic status and signs of peritonitis mechanism alone, enabling selective nonoperative management (SNOM) for carefully chosen stab and even some low-velocity gunshot wounds when serial examinations and imaging are reliable [4]. Conversely, hemodynamic instability, evisceration, overt peritoneal signs, and active gastrointestinal hemorrhage remain classic indications for emergent operative intervention, with paramedic prealert and ED team choreography minimizing doorto-incision latency [1],[4]. Across these pathways, rigorous missed-injury mitigation—through serial abdominal exams, repeat imaging when clinical status evolves, and low thresholds for diagnostic laparoscopy—addresses a primary driver downstream morbidity [1].

Innovation is reshaping both field and inhospital responses. Endovascular strategies, including resuscitative endovascular balloon occlusion of the aorta (REBOA) and selective embolization, now complement or bridge to definitive laparotomy in damage-control scenarios, especially noncompressible torso hemorrhage [4]. modalities, integrated with refined massive transfusion protocols, balanced hemostatic resuscitation, and point-of-care ultrasonography, have shifted early priorities toward hemorrhage control and physiology-first stabilization [4]. For paramedics, evolving protocols emphasize permissive hypotension appropriate, early recognition thoracoabdominal trajectories, rapid transport to trauma centers with hybrid or endovascular capability, and seamless handoffs that communicate mechanism, suspected tract, and physiologic trajectory [3],[4]. Ultimately, the management of penetrating abdominal trauma is a dynamic and continuously studied domain in emergency medicine and paramedic science, where disciplined adherence to algorithms, nuanced understanding of injury mechanics, and judicious adoption of endovascular and damage-control techniques converge to reduce avoidable mortality and

Figure-1: Penetrating Abdominal Injury. **Etiology:**

Penetrating trauma arises when an external object breaches the integumentary barrier and enters the body, either lodging in place or traversing through and exiting, thereby creating a tract of tissue disruption and potential contamination [5]. While firearms and edged weapons account for a substantial proportion of incidents, the etiologic spectrum is broader and includes explosive blasts, industrial mishaps involving high-pressure jets or projectiles, and secondary missiles generated by high-velocity blunt trauma in which bone shards or metallic fragments become

penetrating agents [5]. In each case, the resultant injury pattern reflects the interplay among delivered kinetic energy, the characteristics of the penetrating body, and the vulnerability and viscoelastic properties of the tissues intersected along the wound path [5]. Energy transfer is principally governed by velocity and mass, but clinically salient nuances include projectile design, stability, and vaw, as well as the range at which a weapon is discharged and any interposed barriers that may deform or fragment the projectile [5]. Close-range firearm injuries typically impart greater kinetic energy with a larger temporary and permanent cavity, while stab wounds often produce more localized but still perilous tract injuries when vital vascular or hollow viscus structures are violated [5]. Importantly, secondary fragmentation whether from bone splinters or bullet breakup—can seed multiple microtrajectories, compounding tissue destruction and increasing the likelihood of occult hemorrhage or contamination that is not apparent from superficial inspection [5]. The temporal course of injury spans immediate effects, such as hemorrhagic shock from major vessel disruption to delayed consequences, including peritonitis and abscess formation due to inoculation of enteric flora or retained foreign material, underscoring the dual risks of rapid decompensation and infectious complications inherent to penetrating mechanisms [5].


Epidemiology:

Trauma represents one of the most significant global public health challenges, accounting for approximately 8% of all mortalities worldwide and remaining the leading cause of death in the first several decades of life [6]. Among various forms of trauma, abdominal involvement holds a substantial clinical and epidemiological footprint. In the United States (US), between 10% and 15% of all traumatic injuries involve the abdomen, and this proportion increases to nearly 24% when evaluated across global populations [6]. Following the head and extremities, the abdomen ranks as the third most commonly injured anatomical region in major trauma scenarios [7][8]. Of particular concern is penetrating abdominal trauma, which constitutes up to 38% of all penetrating injuries and represents a major source of morbidity and mortality in both prehospital and hospital settings [9]. Epidemiologic distributions differ markedly across demographic and geographic contexts. In the United States, penetrating abdominal trauma affects about 35% of patients admitted to urban trauma centers, whereas its prevalence drops to approximately 12% in rural or suburban hospitals [9][10][11]. This urban predominance correlates with higher rates of interpersonal violence, firearm accessibility, and population density. Furthermore, penetrating abdominal trauma demonstrates a profound gender and age disparity, being up to five times more common in men under the age of 45 years [7][12]. This demographic pattern reflects social and behavioral determinants, including occupational exposure, risktaking behaviors, and involvement in violent encounters. In developing countries, the trend mirrors that seen in urban US centers, with penetrating injuries—particularly from firearms and knives—emerging as a leading cause of trauma-related mortality among young adult males [12].

The mechanism of injury strongly influences both clinical outcome and epidemiologic distribution. Although gunshot wounds have shown a gradual decline in frequency in some regions due to stricter firearm regulations and urban crime prevention initiatives, they continue to account for nearly 90% of deaths resulting from penetrating abdominal injuries [13]. This disproportionate fatality rate is primarily attributable to the high kinetic energy and unpredictable trajectory of projectiles, which inflict extensive tissue cavitation and multiorgan disruption [14]. Comparatively, a high-velocity gunshot wound carries an eightfold higher risk of mortality than a stab wound [13][14]. Data from major urban trauma centers indicate that approximately 18% of all trauma admissions involve penetrating injuries, and of these, nearly one-fifth of patients require operative intervention within the first four hours of presentation, reflecting the urgency of hemorrhage control and contamination prevention [15]. Anatomically, the spleen and liver are the most frequently injured solid organs in penetrating abdominal trauma [16]. Despite improvements in trauma care, mortality associated with major vascular injuries remains alarmingly high. For instance, mortality from penetrating trauma involving the abdominal aorta rose from 30.4% in 2002 to 66% in 2014, highlighting both the lethality of such injuries and the continued challenges in rapid recognition and intervention [17]. Similarly, duodenal trauma is most often secondary to penetrating mechanisms, with approximately 65% caused by gunshot wounds and 25% by stabbing incidents [18]. These injuries are frequently accompanied by significant hemorrhage from associated vascular injury, underscoring the interdependence of organ and vascular trauma in determining prognosis [18].

Bowel and mesenteric involvement occurs in nearly 17% of penetrating abdominal trauma cases, contributing significantly to septic complications and morbidity due to perforation contamination [19]. The inferior vena cava (IVC) is involved in about 5% of penetrating abdominal trauma cases and carries some of the highest mortality rates observed in trauma literature [20]. Among these, infrarenal IVC injuries are most common, followed by retrohepatic and suprarenal variants, suprahepatic IVC injuries are almost universally fatal, with mortality approaching 100% [20]. Pediatric populations represent a distinct epidemiologic subgroup. Penetrating abdominal trauma accounts for roughly 15% of abdominal trauma in children, with firearm-related injuries responsible for more than 90% of these cases in those over 12 years of age [21]. The gastrointestinal tract, liver, spleen, and kidneys are the

most frequently injured structures, often accompanied by significant vascular compromise [21]. The pattern of stab wounds further illustrates the complexity of penetrating abdominal epidemiology. The most common sites of involvement include the great vessels, diaphragm, mesentery, spleen, liver, kidneys, pancreas, gallbladder, and adrenal glands [22]. The left upper quadrant is most frequently targeted, followed by the left lower, right upper, and right lower quadrants, reflecting both defensive posturing and assailant handedness [22][23]. Posterior abdominal and flank stab wounds warrant particular attention because of their propensity to injure retroperitoneal organs, including the pancreas and major vessels [22]. Multiple stab wounds are common, and approximately 30% of chest stabbings may also penetrate the diaphragm, creating potential for thoracoabdominal contamination [23]. Stab wounds to the anterior chest below the nipple line (fourth intercostal space) and posteriorly below the scapular tip (seventh intercostal space) should prompt evaluation for diaphragmatic injury due to their anatomic continuity with the upper abdomen [23]. Overall, the epidemiology penetrating abdominal trauma underscores concentration among young males, predominance in urban settings, and lethality when associated with firearm mechanisms and vascular involvement. Despite advances in prehospital triage, imaging, and operative strategies, penetrating abdominal trauma continues to exact a substantial global health burden, demanding ongoing refinement of preventive, diagnostic, and therapeutic frameworks across emergency and paramedic care systems.

Figure-2: Abdominal Trauma. **Pathophysiology**

Penetrating abdominal trauma initiates a mechanical, hemodynamic, biochemical events that collectively determine the extent of injury and the patient's physiologic trajectory toward recovery or decompensation. Fundamentally, penetrating trauma results in direct tissue destruction, hemorrhage, and contamination οf compartments. The pathophysiological response depends on both the nature of the penetrating object and the body's reaction to the injury. Low-velocity mechanisms, such as stab wounds, generally produce localized tissue disruption restricted to the tract of penetration, whereas high-velocity gunshot wounds inflict extensive secondary injury through the

transmission of kinetic and thermal energy to surrounding tissues [24]. This distinction forms the basis of understanding how different penetrating forces generate divergent injury patterns and systemic responses. Tissue disruption from penetrating trauma triggers immediate activation of the endothelium, platelets, and coagulation factors. Endothelial injury leads to loss of vascular integrity and increased permeability, allowing inflammatory mediators and immune cells to migrate into the interstitial space [24]. Activated platelets aggregate at the injury site and release pro-thrombotic and vasoactive substances, while the coagulation cascade amplifies fibrin formation to stabilize clots. However, when hemorrhage is significant, blood volume reduction compromises perfusion, diminishing oxygen delivery at the microcirculatory level and setting the stage for ischemia and metabolic acidosis. Simultaneously, depletion of fibrinogen and excessive consumption of coagulation factors precipitate coagulopathy. In severe trauma, this can progress to the "lethal triad" of acidosis, hypothermia, and coagulopathy, culminating in disseminated intravascular coagulation (DIC) and multi-organ failure [24].

As a projectile enters the body, it decelerates while imparting kinetic energy to tissues along its trajectory. The energy transfer follows the principle that kinetic energy is proportional to the square of the projectile's velocity; therefore, a modest increase in velocity results in exponentially greater tissue destruction compared to a proportional increase in mass [1]. The initial path of the projectile forms a cavity known as permanent cavitation, which represents the tissue directly crushed and destroyed by the penetrating object. In high-velocity injuries, additional damage occurs from temporary cavitation, in which a shock wave emanates from the projectile's path, rapidly compressing and displacing tissues radially outward [2]. This creates transient cavities several times larger than the missile itself. Although the displaced tissues may return to their original position once the pressure wave dissipates, the temporary cavitation causes microscopic tearing, necrosis, and vascular injury far beyond the visible wound track [2][25]. Secondary cavitation is particularly destructive when the projectile passes through dense or inelastic tissues such as the liver, spleen, or kidney. These organs, having high specific gravity and limited elasticity, are unable to accommodate the rapid pressure fluctuations, resulting fragmentation, hematoma formation, uncontrolled hemorrhage [2]. Conversely, elastic tissues such as bowel loops can partially absorb the cavitation energy, though perforation contamination remain common complications. Additional injury mechanisms arise when bullets deform, fragment, or tumble within the body. Tumbling increases the surface area of contact, generating irregular wound tracts, while fragmentation creates multiple secondary projectiles, expanding the injury zone [2]. These fragments can migrate, producing distal complications such as pseudoaneurysms or embolization, and in rare cases, bullet emboli may traverse the venous or arterial system to lodge in remote sites [25]. Furthermore, retained lead-containing bullets pose risks of systemic lead toxicity, particularly when embedded in synovial or cerebrospinal spaces where dissolution and absorption are enhanced [25].

The severity of injury from gunshot wounds is profoundly influenced by both firing distance and tissue characteristics. At close range, the projectile's kinetic energy and accompanying thermal and explosive gases create devastating wounds, frequently incompatible with life. Denser tissues, such as muscle, bone, and solid organs, transmit and absorb more energy than less dense structures, resulting in greater crush and cavitation injury [2]. In contrast, hollow organs like the intestines, by virtue of their air content and elasticity, often sustain relatively contained damage unless the projectile directly disrupts their walls. The interplay between tissue density, elasticity, and projectile velocity therefore dictates the extent of internal destruction [2]. Pediatric patients exhibit unique pathophysiologic vulnerabilities in penetrating trauma. Their abdominal cavities have a smaller surface area, thinner muscular and fascial layers, and closer proximity among visceral structures, meaning that the energy from a single projectile dissipates over a smaller volume and causes proportionally greater organ involvement [21]. Additionally, the pediatric abdominal wall offers less resistance, leading to deeper penetration and higher rates of multi-organ injury. This combination of anatomical compactness and energy concentration explains why gunshot wounds in children are often more lethal and require emergent intervention compared to similar mechanisms in adults [21]. In summary, the pathophysiology of penetrating abdominal trauma reflects a complex interaction between mechanical insult and systemic response. The mechanical phase defined by cavitation, fragmentation, and tissue compression—sets off biological cascade a encompassing inflammation, coagulopathy, hypoperfusion, and, ultimately, multi-organ dysfunction if uncontrolled. Understanding these interlinked mechanisms is essential for emergency physicians and paramedics to anticipate clinical deterioration, prioritize hemorrhage control, and apply damage-control strategies aimed at interrupting the lethal cycle of trauma-induced coagulopathy and shock [24][25].

History and Physical

The initial assessment of a patient with penetrating abdominal trauma begins with a comprehensive history and a structured physical examination guided by Advanced Trauma Life Support (ATLS) principles. A detailed and focused history provides critical insights into the mechanism

of injury, helping to anticipate the pattern and severity of internal damage. Information regarding the type of weapon, distance from which it was used, number and location of wounds, and any evidence of projectile exit or fragmentation assists in predicting potential organ involvement and the likelihood of vascular injury [1]. The time interval between the traumatic event and the onset of physiologic decompensation also holds diagnostic and prognostic significance, as delayed deterioration may reflect occult hemorrhage or secondary peritonitis rather than immediate exsanguination [1]. The primary survey emphasizes rapid evaluation and stabilization of airway, breathing, and circulation (the ABCs) while concurrently identifying life-threatening and controlling hemorrhage. In the prehospital and emergency department settings, visible penetrating objects must be carefully inspected but not removed, as premature extraction can precipitate catastrophic bleeding from tamponaded vessels [1]. Any areas of active bleeding should be controlled using direct pressure, hemostatic dressings, or tourniquets as appropriate. During the secondary survey, a more detailed inspection is performed to locate all entry and possible exit wounds, which may not always align anatomically. The trajectory of injury should be inferred when feasible to identify potential internal pathways of damage and guide subsequent imaging or surgical decision-making [11]. Resuscitation proceeds in parallel with assessment. Establishing a definitive airway, ensuring adequate ventilation, and restoring perfusion through intravenous fluid or blood product administration remain top priorities. Early recognition hemodynamic instability, evisceration, or signs of major vascular injury prompts immediate surgical consultation. Eviscerated viscera should be covered with sterile, moist dressings and handled minimally to prevent additional contamination or tissue necrosis [19].

The physical examination requires complete exposure of the patient to identify all wounds, followed by rapid rewarming to prevent hypothermia—a key component of trauma-induced coagulopathy. Abdominal inspection may reveal distention, ecchymosis, or evisceration, while auscultation can demonstrate altered or absent bowel sounds suggestive of peritoneal irritation. Percussion findings of hyperresonance or dullness can indicate pneumoperitoneum or hemoperitoneum, respectively. Palpation may reveal tenderness, rigidity, or rebound, all of which are indicative of peritonitis and necessitate urgent operative evaluation [11][26]. Additional diagnostic maneuvers augment the physical exam. A rectal examination remains an essential component, providing information about sphincter tone, the presence of gross blood, or high-riding prostate suggestive of pelvic injury. Similarly, nasogastric tube placement can yield diagnostic clues—bloody aspirate implies upper gastrointestinal or diaphragmatic involvement, while bilious or feculent drainage from a

wound or tube strongly suggests hollow viscus injury [26]. In stable patients without overt signs of peritonitis, local wound exploration (LWE) may be performed to determine the depth and peritoneal penetration of stab wounds, thereby helping to stratify the need for operative intervention [19]. Throughout this process, physiologic monitoring—including continuous blood pressure, heart rate, oxygen saturation, and mental status assessment—helps detect signs of deterioration that precede cardiovascular collapse. Any findings such as evisceration, exsanguination, hematemesis, or gross bleeding mandate immediate management due to their strong association with lifethreatening internal hemorrhage perforation [19]. Ultimately, the integration of historytaking, resuscitation, and meticulous physical examination forms the cornerstone of early decisionmaking in penetrating abdominal trauma. It allows clinicians to distinguish between patients who can safely undergo selective nonoperative management and those requiring emergent surgical exploration, optimizing survival while minimizing unnecessary laparotomies.

Evaluation

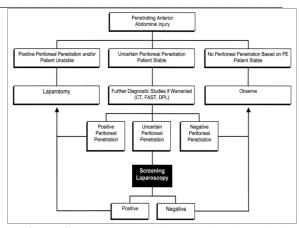
Evaluation of penetrating abdominal trauma is anchored in mechanism-driven assessment and the judicious use of contemporary imaging to stratify risk and expedite intervention. At presentation, the clinician integrates trajectory clues, physiologic status, and the availability of resources to determine whether rapid operative control, endovascular therapy, or selective nonoperative management is indicated. Bedside ultrasonography has assumed a central role: the Focused Assessment with Sonography for Trauma (FAST) has largely supplanted diagnostic peritoneal lavage for the detection of intraperitoneal free fluid, achieving a reported sensitivity of approximately 90% and specificity of 95% for hemoperitoneum, though it remains limited for detecting solid organ parenchymal injuries and mesenteric vascular lesions [11]. The extended protocol (eFAST) systematically surveys the pericardium, pelvis, subphrenic and subhepatic spaces, and paracolic gutters, improving detection of concomitant thoracic injuries and thereby informing immediate resuscitative priorities and operative sequencing [11]. Beyond conventional sonography, contrast-enhanced ultrasound has demonstrated superior sensitivity and specificity versus standard ultrasound in both blunt and penetrating mechanisms, particularly for active bleeding and subtle solid organ injury, offering a radiation-sparing adjunct when serial examinations are required or CT is temporarily unavailable [27][28][29]. Computed tomography (CT) with intravenous contrast remains the cross-sectional modality of choice for hemodynamically stable patients, with pooled performance around 94% sensitivity and 95% specificity for injury detection across abdominal structures [27]. Nevertheless,

mesenteric and hollow viscus injuries are persistently overrepresented among false-negative examinations and are frequently confirmed intraoperatively; this vulnerability underscores the need for thin axial acquisitions with both arterial and portal venous phases to scrutinize bowel wall enhancement, mural discontinuity, and mesenteric vasculature [19]. Indirect CT signs—such as interloop or mesenteric fluid, mesenteric hematoma, and linear contrast extravasation near the mesentery-should heighten suspicion for occult vascular or bowel injury, while visualization of bullet fragments embedded in the bowel wall or intraluminally is highly specific for full-thickness violation necessitating operative evaluation [19].

Advances in multidetector CT (MDCT) have further enhanced detection of small diaphragmatic rents and subtle bowel injuries in penetrating trauma through high-resolution, thin-slice imaging and multiplanar reconstructions that can be accomplished within a single breath-hold, thereby reducing motion artifacts and improving conspicuity of linear defects [30][31]. Notably, comparative data have not shown outcome benefits from routine enteric contrast in penetrating trauma CT protocols, though select scenarios may retain anecdotal utility; in most centers, streamlined intravenous contrast-only protocols predominate to avoid delays and aspiration risk without compromising diagnostic yield [32][33]. Before imaging, careful identification of all entry and exit sites, with radiopaque marking of wounds, improves trajectory estimation and directs targeted review of at-risk compartments on CT [19]. In resource-limited settings or when CT detail is constrained, CT tractography has been used selectively by instilling contrast into the wound tract via catheter immediately prior to scanning to delineate peritoneal violation; while tractography can reduce unnecessary admissions, its accuracy diminishes with higher body mass index and it may be complicated by tract infiltration and discomfort [34].

Special populations require tailored pathways. In pregnancy, CT remains the preferred modality when severe torso trauma is suspected because timely maternal diagnosis drives fetal outcomes; however, MRI can complement evaluation in stable patients or in follow-up of known injuries and is particularly adept at detecting placental abruption without ionizing radiation [35]. MRI and MR angiographic techniques assist when iodinated contrast is contraindicated, and magnetic resonance cholangiopancreatography can delineate pancreatic duct or biliary leaks, a critical capability given the morbidity of missed pancreatic duct injuries and the need to discriminate acute trauma from preexisting disease [35]. Decision support tools and consensus criteria help standardize thresholds for urgent intervention. The World Society of Emergency Surgery defines hemodynamic instability by any of the following: systolic blood pressure <90 mm Hg,

transfusion of more than four units in the first eight hours, requirement for vasopressors, or a base excess greater than 5 mmol/L, each of which should trigger expedited hemorrhage control strategies [36]. Organspecific severity is codified by the American Association for the Surgery of Trauma Injury Scoring Scale, which incorporates features such as free fluid, fat stranding, free air, active bleeding, wound tract characteristics. hemoperitoneum extraluminal contrast, and bowel wall defects or enhancement patterns to grade injuries and inform operative versus nonoperative management. For the elusive spectrum of bowel and mesenteric trauma, the Bowel Injury Prediction Score integrates clinical and laboratory markers—such as tenderness severity and white blood cell count-with indeterminate CT findings to flag patients who warrant exploration despite the absence of definitive radiologic signs [19].


Importantly, evaluation is not a single event but an iterative process extending beyond initial imaging and procedures. After damage control surgery or endovascular hemostasis, routine surveillance and targeted reimaging are essential to uncover missed injuries, particularly when evolving anemia, escalating oxygen requirements, or increasing inflammatory markers suggesting ongoing blood loss or delayed perforation [4]. Thermal and mechanical stresses imparted at the time of injury can precipitate tissue necrosis and ischemia days later; thus, clinical vigilance and low thresholds for repeat CT or adjunctive imaging are warranted when physiology drifts from expected trajectories [4]. Finally, patterns of abdominal wall trauma—fat stranding, hematoma, muscular disruption, herniation—provide or additional, sometimes underappreciated, clues to intraabdominal pathology and should be integrated with the overall trajectory analysis to avoid false reassurance from initially negative studies [19]. In sum, mechanism-informed triage, high-quality FAST/eFAST, optimized MDCT protocols, and structured scoring systems combine to reduce time-totreatment and missed injuries in penetrating abdominal trauma while minimizing unnecessary laparotomy through selective, evidence-guided evaluation [11][27][31][36].

Treatment / Management

Effective management of penetrating abdominal trauma begins with rapid triage anchored in Advanced Trauma Life Support principles developed by the American College of Surgeons, with early priorities focused on arresting hemorrhage, limiting contamination, and reversing the lethal triad of hypothermia, acidosis, and coagulopathy [21][37]. Initial measures include active rewarming, hemostatic resuscitation using balanced blood product ratios and electrolyte replacement, and the judicious application of permissive hypotension to sustain vital organ perfusion while minimizing ongoing bleeding prior to definitive control [37][38]. Trauma injury scales aid early risk stratification and resource mobilization,

aligning patients toward one of three general pathways: immediate operative or endovascular intervention, expedited resuscitation coupled with targeted imaging, or a trial of selective nonoperative management when physiologically appropriate [37]. National and international consensus statements provide detailed algorithms to standardize these choices; clinicians should consult the Eastern Association for the Surgery of Trauma Practice Management Guidelines for antibiotic stewardship, open abdomen strategy, selective nonoperative management, and pregnancy-specific considerations, as well as the Western Trauma Association algorithms for gunshot and stab wound decision-making in the Journal of Trauma and Acute Care Surgery [13][39]. The expansion of high-quality imaging and the integration of diagnostic laparoscopy have driven a sustained reduction in nontherapeutic laparotomies, with contemporary series reporting lower conversion rates from laparoscopy to laparotomy relative to the prior decade and comparable rates of missed injury between the two approaches [40][41]. Nonetheless, the threshold for operative exploration remains low when unequivocal indicators are present. Fullthickness bowel or mesenteric disruption, bowel ischemia, active contrast extravasation, avulsion of vessels or parenchymal organs, pneumoperitoneum or pneumoretroperitoneum, and mesenteric air mandate surgery in virtually all settings, whereas stable patients with isolated free fluid, intramural hematoma, subtle mural enhancement abnormalities, bowel wall thickening, mesenteric fat stranding, or contained mesenteric hematoma may be candidates structured observation with serial exams laboratory surveillance [19]. Organ-specific injury grading systems, particularly those of the American Association for the Surgery of Trauma, are applied in concert with continuous hemodynamic monitoring to calibrate the need, timing, and extent of operative intervention. Low-grade splenic lacerations, for example, may be safely managed nonoperatively, while higher-grade injuries often necessitate splenectomy or spleen-preserving procedures depending on physiology and associated injuries [3][42]. The paradigm of selective nonoperative management has matured beyond high-volume centers; multicenter data from northern Europe affirm that carefully monitored observation remains a viable option even in institutions with relatively fewer such cases [43]. A meta-analysis of 53 studies including 60,291 patients with abdominal gunshot wounds found that among the 27% initially selected for nonoperative management, only 10% ultimately required surgery, while 10% of the 73% selected for immediate laparotomy had no operative injury—highlighting both the potential to avoid unnecessary laparotomy and the need for precise selection [14].

When surgery is indicated and the patient is hemodynamically stable, laparoscopy has emerged as a safe and effective modality associated with lower mortality, fewer complications, and shorter lengths of stay compared to laparotomy [44]. It is also a useful rescue strategy following failed nonoperative management. Early experience with laparoscopy was marred by high missed-injury rates, but with advances in optics, energy devices, and surgeon expertise, contemporary series report rates below 1% [45]. The technique has expanded to include laparoscopic splenectomy or spleen-preserving approaches after nonoperative failure, reflecting a broader shift toward parenchyma-sparing strategies where feasible [46]. Laparoscopy can function diagnostically to confirm peritoneal violation in equivocal anterior abdominal stab wounds, although institutional criteria for its use vary and continue to evolve with accumulating experience [26]. The 2022 update of the German Guideline on the Treatment of Patients with Multiple and/or Severe **Injuries** endorses diagnostic laparoscopy for hemodynamically stable penetrating trauma when intervention need is uncertain and recommends abandoning diagnostic peritoneal lavage in favor of modern alternatives [47]. Pediatric laparoscopy remains concentrated in specialized centers, but emerging data suggest favorable outcomes without missed injuries when appropriately selected [48]. Interventional radiology and hybrid operative strategies now occupy a central role in hemorrhage control for select patients. Angioembolization is well established for pelvic arterial bleeding in relatively stable patients and provides superior access to deep pelvic vessels with the potential to spare noninjured tissue through selective embolization [49][50]. Hybrid approaches that marry abbreviated laparotomy with endovascular techniques have been used to manage massive intra-abdominal hemorrhage, allowing teams to sequence control of arterial inflow, venous return, and contamination with minimal physiologic penalty [25]. Endovascular repair for discrete vascular injuries is increasingly common; however, open surgery remains essential for injuries necessitating urgent revascularization, debridement, or thrombosis prevention. Expanding options for conduits beyond autologous vein have broadened reconstructive possibilities, but standardized protocols await further comparative study to define optimal timing and technique [17].

Figure-3: Management of penetrating abdominal injury.

Structure-specific strategies are critical to improving outcomes. Duodenal trauma presents unique challenges due to anatomical adjacency to the pancreas, bile duct, and major vessels, high rates of combined injuries, and the risk of anastomotic failure; management typically involves meticulous debridement, tension-free repair or resection, wide drainage, and selective diversion, with trauma pancreaticoduodenectomy reserved devastating injuries to the pancreatic headduodenum-biliary complex [18][51]. In penetrating renal trauma, options range from primary repair or partial nephrectomy to total nephrectomy for uncontrolled hemorrhage, renal pelvis avulsion, or pedicle disruption; opening Gerota's fascia eliminates tamponade and may precipitate brisk bleeding and extravasation, while embolization is increasingly incorporated into nonoperative strategies despite higher nephrectomy and embolization failure rates than in blunt trauma when stratified by injury grade [52]. Hepatic injury spans the spectrum from minor lacerations amenable to observation to lifethreatening parenchymal disruption. For diffuse hepatic bleeding, perihepatic packing to correct coagulopathy and hypothermia, with re-exploration around 48 hours, is standard; earlier returns to the operating room confer higher rebleeding risk. Emergency hepatectomy is rarely required and carries high mortality. Single-center experience suggests roughly 20% of penetrating liver injuries can be managed nonoperatively, whereas operative strategies favor packing, suture hepatorrhaphy, omental patching, and selective embolization rather than major resection when possible [53]. Clinicians must weigh the benefits of angioembolization against risks such as hepatic necrosis, particularly in the coagulopathic or vasoconstricted patient [54]. In exsanguinating scenarios, escalation to vessel ligation, temporary shunting, hepatic vascular exclusion, or even aortic occlusion may be necessary; adjuncts include aortic cross-clamping above the celiac axis or endovascular occlusion, with portal vein ligation considered only as a last resort due to the attendant risk of hepatic and

intestinal ischemia. Cholecystectomy is recommended in severe hepatic trauma to preempt gallbladder necrosis, and extreme salvage measures such as balloon occlusion of the vena cava and aorta or venovenous bypass have been described as bridges to definitive repair or transplant [55][56]. Retrohepatic inferior vena cava injury typifies the formidable end of the spectrum, with mortality approaching 90% and frequent need for combined abdominal and thoracic exposure [54]. Failure of inflow occlusion at the hepatic hilum to control right upper quadrant bleeding implies major venous injury, necessitating sequential control of infra- and suprahepatic cava with prior control of the hepatic artery and portal vein before liver mobilization. The historical atriocaval shunt introducing a 36 French conduit from the right atrial appendage to the suprarenal cava—has largely fallen out of favor due to hemodynamic collapse risk and poor outcomes, while modern veno-venous bypass provides decompression with improved physiologic tolerance in select centers [54].

When profound hypothermia, coagulopathy, and metabolic acidosis ensue, a damage control strategy is indicated. The initial operation pursues rapid hemorrhage control and contamination mitigation, followed by temporary abdominal closure and transfer to the intensive care unit for active rewarming, correction of coagulopathy, optimization of perfusion before definitive repair [1]. Contemporary paradigms explicitly integrate interventional radiology as either an alternative or an adjunct, leveraging balloon occlusion, selective or nonselective embolization, and stenting to tailor hemorrhage control to the patient's physiology and bleeding source [36]. Procedure duration and radiation exposure tend to increase with highly selective interventions, mandating team discipline and clear endpoints. Updated resources from the American College of Surgeons Committee on Trauma include angioembolization capacity among optimal trauma system requirements and extend its application even to hemodynamically unstable patients exhibiting a transient response to resuscitation Postoperatively, vigilant monitoring for abdominal compartment syndrome is essential, with negativepressure temporary closure and staged re-exploration to achieve early definitive fascial closure when feasible, thereby reducing infectious and ventilatory complications [36]. Resuscitative thoracotomy persists as a time-sensitive salvage option for patients who arrest from penetrating injury, permitting aortic cross-clamping to prioritize coronary and cerebral perfusion temporize subdiaphragmatic and hemorrhage. Guidelines emphasize a narrow window—generally less than 10 minutes from loss of pulse to thoracotomy-and report survival around 2.9% for patients with extrathoracic penetrating trauma who arrive with a pulse, versus 0.1% without such measures [57]. In parallel, resuscitative endovascular balloon occlusion of the aorta (REBOA)

has supplanted thoracotomy in some contexts of noncompressible torso hemorrhage, particularly below the diaphragm [58]. Early experiences, including small observational cohorts with predominantly explosive and firearm mechanisms, demonstrate technical feasibility and survival to discharge in a majority, though variability in indications, team experience, and protocol adherence complicates comparisons [58]. One comparative analysis associated REBOA with higher in-hospital mortality in penetrating abdominal trauma relative to other methods, whereas a meta-analysis suggested mortality benefits relative to resuscitative thoracotomy, illustrating the ongoing uncertainty and the importance of institutional governance and training [59][60].

Accordingly, major centers have formalized REBOA pathways with credentialed operators and interprofessional training modeled on emergency thoracotomy curricula and Department of Defense endovascular skills programs, adapted for civilian practice [58]. Suggested selection criteria include persistent hypotension with diminishing response to resuscitation and evidence of abdominopelvic exsanguination excluding major thoracic sources. Since 2014, many programs have standardized early femoral arterial access for patients with systolic blood pressure below 80 mm Hg using a 5 French line that can be upsized to a 7 French sheath for balloon placement, facilitating rapid escalation if physiology deteriorates [58]. Contemporary techniques allow confirmation with portable radiography and external landmarking keyed to the sternal notch for supradiaphragmatic occlusion and the xiphoid for infradiaphragmatic positioning, with protocols limiting complete occlusion to 30–60 minutes and encouraging partial or intermittent occlusion to reduce distal ischemia [58][61]. Programmatic implementation at an urban level I center, supported by dedicated supply carts, visual protocols, and ongoing professional practice evaluation, documented 97 deployments over five years—15% for penetrating abdominal trauma with overall survival of 65%, underscoring how system design and training can shape outcomes [15]. Finally, comprehensive management extends beyond the operating theater. Early antibiotic administration hollow tailored to viscus iniurv risk. thromboembolism prophylaxis balanced against bleeding, glycemic control, and early enteral nutrition all influence recovery trajectories and reduce complications [39]. Post-injury imaging after damage control procedures is crucial to detect missed injuries, especially when unexpected hemoglobin decline or escalating oxygen requirement signals ongoing pathology [4]. Because thermal and mechanical tissue stresses can evolve into delayed perforation, ischemia, or bile and pancreatic leaks, teams must maintain a low threshold for repeat CT, targeted angiography, or MR cholangiopancreatography when clinical course deviates from expectation [35]. Throughout hospitalization, serial examinations remain indispensable; many findings that are tolerated in blunt mechanisms—such as small serosal tears or contained hematomas—carry different implications penetrating trauma and may warrant operative management to prevent catastrophic deterioration [19]. In aggregate, modern care for penetrating abdominal trauma is defined by disciplined adherence to ATLS tenets, algorithm-driven triage, selective nonoperative pathways when safe, minimally invasive and endovascular innovation where effective, and meticulous postoperative vigilance—all converging to reduce preventable mortality and disability in this high-risk population [21][36][39].

Ongoing Trials

Contemporary investigations continue to refine when and how minimally invasive strategies should be used for penetrating abdominal trauma. Single-center series consistently report that laparoscopy is feasible and safe for hemodynamically stable patients—across both blunt and penetrating mechanisms—while reiterating its inadvisability in frank hemodynamic instability, in which rapid control of hemorrhage and contamination takes precedence [45][62][63]. Synthesizing broader experience, a meta-analysis of 5,517 patients across 23 studies demonstrated no difference in missed injury or mortality between laparoscopy and laparotomy in abdominal trauma; importantly, rates of intraabdominal abscess, deep vein thrombosis, pulmonary embolism, and ileus were similar, whereas wound infection and pneumonia were reduced and both hospital length of stay and operative time were shorter with laparoscopy [6]. Pediatric-focused evidence mirrors these findings: in stable children with blunt or penetrating abdominal trauma, laparoscopy achieves comparable outcomes, reduces nontherapeutic laparotomy, and does not raise the risk of missed injury, supporting its selective use in experienced centers [64]. Organ-specific studies are probing the boundaries of nonoperative care. A single-center analysis of blunt and penetrating liver trauma reported more concomitant intra-abdominal injuries with penetrating mechanisms, especially hollow viscus involvement, and documented nonoperative success in 20% of penetrating cases versus 66% of blunt injuries, highlighting both the potential and limits of observation in penetrating hepatic trauma [53]. Imaging-driven selection remains under scrutiny; one investigation in the Journal of Trauma and Acute Care Surgery found that preoperative CT in patients ultimately proceeding to surgery for abdominal gunshot wounds neither improved diagnostic accuracy nor altered management, yet contributed to nontherapeutic laparotomy in select scenarios, arguing for restraint in unstable or clearly operative cases [65]. Technique-specific questions persist as well: comparative data on penetrating colonic injury show no statistically significant differences in in-hospital mortality or major complications—including acute kidney injury, thrombotic events, and infectious outcomes—between diversion and primary repair, suggesting that patient physiology, contamination degree, and tissue quality should drive individualized operative decisions rather than a one-size-fits-all algorithm [66].

Prognosis

Prognostication after penetrating abdominal trauma is anchored in validated injury severity metrics and early physiologic responses. Scoring toolsincluding the penetrating abdominal trauma index quantify risk based on the organs injured and the extent of damage, yielding a 0-200 scale that correlates with morbidity and mortality and supports structured, comparative decision-making across institutions [67][68]. Early death typically stems from uncontrolled hemorrhage, whereas later mortality reflects progressive organ failure; accordingly, coagulopathy, blood loss, hypothermia, and acidosis are robust general predictors of adverse outcomes and are targets for aggressive, protocolized correction [21][54][56]. Laboratory markers refine this picture: a prothrombin ratio exceeding 1.2 and an international normalized ratio above 5 portend worse survival, capturing the spiral of trauma-induced coagulopathy that amplifies bleeding and transfusion requirements Timeliness of definitive care remains paramount—the "golden hour" concept retains empirical support, with treatment initiated within the first hour after significant injury associated with improved survival [69]. Additional poor prognostic indicators include sustained systolic blood pressure below 90 mm Hg and the presence of extra-abdominal injuries that compound physiologic insult [12]. Organ and procedure-specific factors deepen prognostic nuance. Anastomotic leak after emergent bowel resection carries approximately 46% mortality; risk is heightened by delayed fascial closure, ongoing need for inotropic support, and distal anastomosis under hostile, contaminated conditions [1]. In colonic trauma, more distal injuries are associated with poorer outcomes, reflecting blood supply and contamination gradients as well as challenges of diversion and reconstruction in unstable patients [40]. Hepatic penetrating trauma prognosis tracks closely with injury grade, with mortality approaching 95% for grade VI lesions and nearly 100% for retro-hepatic cava and main hepatic vein injuries; intraoperative deaths are dominated by exsanguination, whereas postoperative mortality trends toward multisystem organ failure [70]. A liver-specific prognostic model integrating bilirubin, prothrombin time, creatinine, age, and overall injury severity further stratifies mortality risk and can guide counseling and resource allocation in high-grade cases [69]. Host factors are increasingly recognized as outcome modifiers. Metaanalytic data indicate that obesity in the context of gunshot injury is associated with longer hospitalizations, prolonged intensive care courses, increased respiratory complications, and higher mortality, dispelling the notion that increased abdominal wall fat confers meaningful protection against penetrating mechanisms [71]. Broader analyses across blunt and penetrating cohorts similarly show that patients with body mass index above 40 have higher odds of in-hospital death and longer lengths of stay in both ward and ICU settings. underscoring the need for tailored ventilatory strategies, thromboembolism prophylaxis, mobilization protocols in this high-risk population [72]. Overall, prognosis reflects the interplay of initial physiology, anatomic injury burden, timeliness and appropriateness of intervention, and patient-specific factors, reinforcing the value of early hemostasis, meticulous critical care, and dynamic reassessment.

Complications

Complications after penetrating abdominal trauma arise from the initial mechanical insult, the physiologic derangements of shock and coagulopathy, and the necessary but invasive interventions used to salvage life. Systemic sequelae include sepsis from hollow viscus contamination, abdominal compartment syndrome after massive resuscitation and packing, acute respiratory failure, consumptive and dilutional coagulopathies, disseminated intravascular coagulation, and transfusion-related lung injury alongside other transfusion-associated complications [24][73]. Postoperative morbidities are varied and clinically significant: wound dehiscence, intraabdominal and organ-space abscess formation, arterial and venous thromboses, iatrogenic vascular trauma, and surgical site infections remain common and are influenced by injury severity, contamination, and the magnitude and duration of operative intervention [15][74]. Vascular wall disruptions and endovascular manipulations predispose to pseudoaneurysm formation, which may present late and require vigilant surveillance and timely repair [56][75]. Across operative cohorts, longer procedures and greater tissue trauma correlate with higher wound infection rates, emphasizing the importance of damage control strategies and staged reconstruction to limit physiologic hit and operative time [76]. In the presence of diaphragmatic injury, laparoscopic insufflation can precipitate tension pneumothorax, mandating readiness for immediate decompression and careful intraoperative ventilatory management [45]. Organ-directed complications track with anatomic patterns of injury and reconstruction choices. Enteric fistulas may develop to adjacent viscera or through the abdominal wall, particularly after resection in contaminated fields or when ischemic margins are underestimated; extensive small bowel loss risks short bowel syndrome with attendant malabsorption and fluid-electrolyte instability. Anastomotic failure is a prototypical hazard in trauma settings, driven by edema, contamination, vasopressor use, and challenging tissue quality, with the duodenum notably prone to leakage due to retroperitoneal location and complex vascular supply [18]. Hepatobiliary sequelae include biloma formation from ductal disruption or ischemic cholangiopathy, sometimes necessitating percutaneous drainage or endoscopic intervention [18]. Splenic management carries its own spectrum of risk: beyond hemorrhagic complications and abscess, patients who undergo splenectomy face the lifelong threat of overwhelming post-splenectomy infection—a fulminant sepsis syndrome with approximately 50% mortality necessitating vaccination protocols, antibiotic education, and heightened vigilance for febrile illness [46]. Collectively, these complications argue for multidisciplinary follow-up, proactive infection prevention, early nutritional rehabilitation, and deliberate strategies to shorten ventilator days and central line exposure, thereby mitigating the cascading harms that can follow survival from the index penetrating injury.

Conclusion:

In conclusion, the effective management of penetrating abdominal trauma demands a highly systematic and rapid response protocol initiated from the moment of patient arrival. The cornerstone of this approach is a rigorous adherence to ATLS principles, ensuring immediate attention to the airway, breathing, and circulation, with hemorrhage control as the overriding priority. The patient's hemodynamic status is the primary determinant of the subsequent pathway; instability mandates immediate surgical intervention for life-saving hemorrhage control, while stability allows for a more nuanced, Selective Non-Operative Management (SNOM) strategy. The integration of diagnostic tools like the FAST exam and advanced CT imaging is critical for accurate injury identification and triage, guiding decisions between operative and non-operative care. The evolution of management paradigms has been significantly shaped by the adoption of minimally invasive techniques. Diagnostic and therapeutic laparoscopy, along with endovascular procedures such as REBOA and angioembolization, have provided powerful alternatives to traditional laparotomy, reducing morbidity compromising patient safety. Ultimately, a successful outcome relies on a seamless, interdisciplinary effort that combines disciplined initial assessment, sophisticated imaging, and a flexible treatment arsenal ranging from vigilant observation to damage-control surgery. This integrated and dynamic approach is essential for mitigating the high mortality and complication rates associated with this severe form of trauma.

References:

- 1. Kyle E, Grice S, Naumann DN. Penetrating abdominal trauma. Br J Surg. 2024 Aug 02;111(8)
- 2. Varma D, Brown P, Clements W. Importance of the Mechanism of Injury in Trauma Radiology

- Decision-Making. Korean J Radiol. 2023 Jun;24(6):522-528.
- Obadiel YA, Albrashi A, Allahabi N, Sharafaddeen M, Ahmed F. Outcomes of Nonoperative Management of Penetrating Abdominal Trauma Injury: A Retrospective Study. Cureus. 2024 Apr;16(4):e58599.
- 4. Ahmad ZY, McDonald JMN, Baghdanian AA, Anderson SW, LeBedis CA. CT imaging of clinically significant abdominopelvic injuries in the damage control surgery patient. Emerg Radiol. 2024 Dec;31(6):797-805.
- Revell MA, Pugh MA, McGhee M. Gastrointestinal Traumatic Injuries: Gastrointestinal Perforation. Crit Care Nurs Clin North Am. 2018 Mar;30(1):157-166.
- Wang J, Cheng L, Liu J, Zhang B, Wang W, Zhu W, Guo Y, Bao C, Hu Y, Qi S, Wang K, Zhao S. Laparoscopy vs. Laparotomy for the Management of Abdominal Trauma: A Systematic Review and Meta-Analysis. Front Surg. 2022;9:817134.
- Abdulkadir A, Mohammed B, Sertse E, Mengesha MM, Gebremichael MA. Treatment outcomes of penetrating abdominal injury requiring laparotomy at Hiwot Fana Specialized University Hospital, Harar, Ethiopia. Front Surg. 2022;9:914778.
- Mirzamohamadi S, HajiAbbasi MN, Baigi V, Salamati P, Rahimi-Movaghar V, Zafarghandi M, Isfahani MN, Fakharian E, Saeed-Banadaky SH, Hemmat M, Sadrabad AZ, Daliri S, Pourmasjedi S, Piri SM, Naghdi K, Yazdi SAM. Patterns and outcomes of patients with abdominal injury: a multicenter study from Iran. BMC Emerg Med. 2024 May 31:24(1):91.
- 9. Nishimura T, Sakata H, Yamada T, Terashima M, Shirai K, Yamada I, Kotani J. Different Patterns in Abdominal Stab Wound in the Self-Inflicted and Assaulted Patients: An Observational Analysis of Single Center Experience. Kobe J Med Sci. 2017 Jul 20;63(1):E17-E21.
- Arafat S, Alsabek MB, Ahmad M, Hamo I, Munder E. Penetrating abdominal injuries during the Syrian war: Patterns and factors affecting mortality rates. Injury. 2017 May;48(5):1054-1057.
- 11. Nadikuditi S, Uthraraj NS, Krishnamurthy V, Kumar K, Hiriyur Prakash M, Sriraam LM, Shanker Ramasamy GK, Chettiakkapalayam Venkatachalam KU. Penetrating Abdominal Trauma: Descriptive Analysis of a Case Series From an Indian Metropolitan City. Cureus. 2022 Dec;14(12):e32429.
- 12. Shenkutie WT, Kaso T, Kaso AW, Agero G. Outcomes and Its Associated Factors among Patients with Abdominal Trauma Requiring Laparotomy at Asella Referral and Teaching Hospital, South Central Ethiopia: A Retrospective Cross-Sectional

- Study. ScientificWorldJournal. 2024;2024:55726 33.
- 13. Martin MJ, Brown CVR, Shatz DV, Alam H, Brasel K, Hauser CJ, de Moya M, Moore EE, Vercruysse G, Inaba K. Evaluation and management of abdominal gunshot wounds: A Western Trauma Association critical decisions algorithm. J Trauma Acute Care Surg. 2019 Nov;87(5):1220-1227
- 14. Liu T, Fang X, Bai Z, Liu L, Lu H, Qi X. Outcomes of selective non-operative management in adults with abdominal gunshot wounds: a systematic review and meta-analysis. Int J Surg. 2024 Feb 01:110(2):1183-1195.
- 15. Hadley JB, Coleman JR, Moore EE, Lawless R, Burlew CC, Platnick B, Pieracci FM, Hoehn MR, Coleman JJ, Campion EM, Cohen MJ, Cralley A, Eitel AP, Bartley M, Vigneshwar N, Sauaia A, Fox CJ. Strategies for successful implementation of resuscitative endovascular balloon occlusion of the aorta in an urban Level I trauma center. J Trauma Acute Care Surg. 2021 Aug 01;91(2):295-301.
- Corvino F, Giurazza F, Marra P, Ierardi AM, Corvino A, Basile A, Galia M, Inzerillo A, Niola R. Damage Control Interventional Radiology in Liver Trauma: A Comprehensive Review. J Pers Med. 2024 Mar 29;14(4)
- 17. Kabeil M, Kauvar DS, Bennett L, Wohlauer MV. Recent advances and the future of abdominopelvic and lower extremity vascular injury management. Semin Vasc Surg. 2023 Jun;36(2):268-282.
- 18. McCague A, Patterson B, Taggart T. Management of Complex Duodenal Injuries After Penetrating Trauma. Cureus. 2023 Jun;15(6):e40431.
- Kaewlai R, Chatpuwaphat J, Maitriwong W, Wongwaisayawan S, Shin CI, Lee CW. Radiologic Imaging of Traumatic Bowel and Mesenteric Injuries: A Comprehensive Up-to-Date Review. Korean J Radiol. 2023 May;24(5):406-423.
- Ahmed NM, Aki BS, Demeke DA, Ahmed SM. Management of Inferior vena cava injury in a resource limited setup: A rare case report. Int J Surg Case Rep. 2025 Jan;126:110685.
- Elek Z, Igrutinovic G, Grujic B, Djordjevic I, Konstantinovic S. Gunshot Abdominal Injuries: A Report of Two Cases and a Review of the Literature. Medicina (Kaunas). 2023 Sep 25;59(10)
- 22. Kartal Yeter ND, Karaca MA, Yeter AS, Öztürk İnce E, Erbil B. Evaluation of stabbing assault injuries in a tertiary emergency department: a retrospective observational study. BMC Emerg Med. 2024 Sep 16;24(1):168.
- 23. Campbell BR, Rooney AS, Krzyzaniak A, Lee JJ, Carroll AN, Calvo RY, Peck KA, Martin MJ, Bansal V, Sise MJ, Krzyzaniak MJ. To the point:

- Utility of laparoscopy for operative management of stabbing abdominal trauma. Am J Surg. 2024 May;231:125-131.
- Saviano A, Perotti C, Zanza C, Longhitano Y, Ojetti V, Franceschi F, Bellou A, Piccioni A, Jannelli E, Ceresa IF, Savioli G. Blood Transfusion for Major Trauma in Emergency Department. Diagnostics (Basel). 2024 Mar 27:14(7)
- 25. Elkbuli A, Carlin M, Ngatuvai M, McKenney M, Boneva D. Survival following devastating penetrating gunshots polytrauma with grade 5 liver injuries requiring multiple massive transfusion protocols: A case report and review of the literature. Int J Surg Case Rep. 2022 Sep;98:107608.
- 26. Sylivris A, Liu ZF, Shakerian R, Loveday BPT, Read DJ. Paradigms in trauma laparoscopy for anterior abdominal stab wounds: A scoping review. Injury. 2024 Feb;55(2):111298.
- Nguyen CM, Hartmann K, Goodmurphy C, Flamm A. E-FAST Ultrasound Training Curriculum for Prehospital Emergency Medical Service (EMS) Clinicians. J Educ Teach Emerg Med. 2024 Jan;9(1):C41-C97.
- 28. Reis NC, Handspiker EA, Bauerle WB, Reese V, Benton AJ, Castillo RC, Robins LK, Ramirez CL, Braverman MA, Thomas PG. FAST and Furious About Quality: Impact of Continuous Review and Feedback on Point-of-Care Ultrasound Examinations. Am Surg. 2024 Nov;90(11):2857-2861.
- Kong V, Ko J, Lee B, Leow P, Manchev V, Bruce J, Laing G, Clarke D. Double Jeopardy Injuries: Improved Clinical Outcomes With FAST Imaging and Subxiphoid Pericardial Window for Combined Cardiac and Abdominal Stab Wounds. Am Surg. 2023 Jun;89(6):2391-2398.
- 30. Paes FM, Durso AM, Pinto DS, Covello B, Katz DS, Munera F. Diagnostic performance of triple-contrast versus single-contrast multi-detector computed tomography for the evaluation of penetrating bowel injury. Emerg Radiol. 2022 Jun;29(3):519-529
- 31. Hassankhani A, Amoukhteh M, Valizadeh P, Jannatdoust P, Eibschutz LS, Myers LA, Gholamrezanezhad A. Diagnostic utility of multidetector CT scan in penetrating diaphragmatic injuries: A systematic review and meta-analysis. Emerg Radiol. 2023 Dec: 30(6):765-776.
- 32. Rajput MZ, Kapoor S, Wright AJ, Friedman DD, Patlas MN, Mellnick VM. The Use of Enteric Contrast in the Emergency Setting. Radiol Clin North Am. 2023 Jan;61(1):37-51.
- 33. Alabousi M, Zha N, Patlas MN. Use of Enteric Contrast Material for Abdominopelvic CT in Penetrating Traumatic Injury in Adults: Comparison of Diagnostic Accuracy Systematic

- Review and Meta-Analysis. AJR Am J Roentgenol. 2021 Sep;217(3):560-568.
- 34. Hagiga A, Gultiaeva M, Shackleton D, Shaaban M. CT tractography accuracy in detecting organ and peritoneal violation in torso penetrating wounds: A systematic review and meta-analysis. Am J Emerg Med. 2020 Feb;38(2):384-390.
- 35. Odedra D, Scaglione M, Basilico R, Patlas MN. Magnetic resonance imaging in abdominal trauma-More relevant than ever. Can Assoc Radiol J. 2022 Nov;73(4):612-613.
- Ascenti V, Ierardi AM, Alfa-Wali M, Lanza C, Kashef E. Damage Control Interventional Radiology: The bridge between non-operative management and damage control surgery. CVIR Endovasc. 2024 Oct 03;7(1):71.
- Giannoudis VP, Rodham P, Giannoudis PV, Kanakaris NK. Severely injured patients: modern management strategies. EFORT Open Rev. 2023 May 09;8(5):382-396.
- 38. Abdulkhaleq Mamalchi S, Matar M, Bass GA. Peri-operative strategy in resuscitation of unstable injured surgical patients: a primer. Postgrad Med J. 2025 Jan 23;101(1192):93-99.
- 39. Martin MJ, Brown CVR, Shatz DV, Alam HB, Brasel KJ, Hauser CJ, de Moya M, Moore EE, Rowell SE, Vercruysse GA, Baron BJ, Inaba K. Evaluation and management of abdominal stab wounds: A Western Trauma Association critical decisions algorithm. J Trauma Acute Care Surg. 2018 Nov;85(5):1007-1015.
- Oosthuizen GV, Čačala SR, Kong VY, Couch D, Buitendag J, Variawa S, Allen N, Clarke DL. Penetrating Colon Trauma-the Effect of Injury Location on Outcomes. World J Surg. 2022 Jan;46(1):84-90.
- 41. Kobayashi L, Coimbra R, Goes AMO, Reva V, Santorelli J, Moore EE, Galante JM, Abu-Zidan F, Peitzman AB, Ordonez CA, Maier RV, Di Saverio S, Ivatury R, De Angelis N, Scalea T, Catena F, Kirkpatrick A, Khokha V, Parry N, Civil I, Leppaniemi A, Chirica M, Pikoulis E, Fraga GP, Chiarugi M, Damaskos D, Cicuttin E, Ceresoli M, De Simone B, Vega-Rivera F, Sartelli M, Biffl W, Ansaloni L, Weber DG, Coccolini F. American Association for the Surgery of Trauma-World Society of Emergency Surgery guidelines on diagnosis and management of abdominal vascular injuries. J Trauma Acute Care Surg. 2020 Dec:89(6):1197-1211.
- 42. Sander A, Spence R, Ellsmere J, Hoogerboord M, Edu S, Nicol A, Navsaria P. Penetrating abdominal trauma in the era of selective conservatism: a prospective cohort study in a level 1 trauma center. Eur J Trauma Emerg Surg. 2022 Apr;48(2):881-889.
- Saar S, Jorgensen J, Lemma AN, Gaarder C, Naess PA, Leppäniemi A, Sallinen V, Pius R, Reinsoo A, Lepp J, Talving P. Selective non-

- operative management of penetrating abdominal injuries at Northern European trauma centers: the NordiPen Study. Eur J Trauma Emerg Surg. 2022 Jun;48(3):2023-2027.
- 44. Hage K, Nelson A, Khurshid MH, Stewart C, Hosseinpour H, Okosun S, Hejazi O, Magnotti LJ, Bhogadi SK, Joseph B. Diagnostic Laparoscopy in Trauma Patients: Do We Need to Open and See if We Can See Without Opening? J Surg Res. 2024 Nov;303:14-21.
- 45. Jastaniah A, Grushka J. The Role of Minimally Invasive Surgeries in Trauma. Surg Clin North Am. 2024 Apr;104(2):437-449.
- 46. Romeo L, Bagolini F, Ferro S, Chiozza M, Marino S, Resta G, Anania G. Laparoscopic surgery for splenic injuries in the era of non-operative management: current status and future perspectives. Surg Today. 2021 Jul;51(7):1075-1084.
- 47. Jensen KO, Prediger B, Könsgen N, Teuben MPJ. Initial surgical management of injuries to the lower extremities in patients with multiple and/or severe injuries A systematic review and clinical practice guideline update. Eur J Trauma Emerg Surg. 2024 Dec;50(6):3329-3350.
- 48. Patwardhan UM, Erwin CR, Rooney AS, Campbell B, Keller B, Krzyzaniak A, Bansal V, Sise MJ, Krzyzaniak MJ, Ignacio RC. Scoping it Out: The Use of Laparoscopy After Penetrating Trauma in Stable Children. J Pediatr Surg. 2025 Feb;60(2):161983.
- 49. Aziz HA, Bugaev N, Baltazar G, Brown Z, Haines K, Gupta S, Yeung L, Posluszny J, Como J, Freeman J, Kasotakis G. Management of adult renal trauma: a practice management guideline from the eastern association for the surgery of trauma. BMC Surg. 2023 Jan 27;23(1):22.
- 50. Nguyen PD, Nahmias J, Aryan N, Samuels JM, Cripps M, Carmichael H, McIntyre R, Urban S, Burlew CC, Velopulos C, Ballow S, Dirks RC, Spalding MC, LaRiccia A, Farrell MS, Stein DM, Truitt MS, Grossman Verner HM, Mentzer CJ, Mack TJ, Ball CG, Mukherjee K, Mladenov G, Haase DJ, Abdou H, Schroeppel TJ, Rodriquez J, Bala M, Keric N, Crigger M, Dhillon NK, Ley EJ, Egodage T, Williamson J, Cardenas TCP, Eugene V, Patel K, Costello K, Bonne S, Elgammal FS, Dorlac W, Pederson C, Werner NL, Haan JM, Lightwine K, Semon G, Spoor K, Harmon LA, Grigorian A. Main versus segmental hepatic artery angioembolization in patients with traumatic liver injuries: A Western Trauma Association multicenter study. Surgery. 2025 Feb;178:108909.
- 51. Alia VS, Alvarado EW, Diaz EM, Albo D, Galindo R. From the borders edge to the brink of death: A case of a traumatic pancreatic injury and Whipple procedure in the Rio Grande Valley. Trauma Case Rep. 2023 Dec;48:100940.

- 52. Lee P, Roh S. Renal embolization for trauma: a narrative review. J Trauma Inj. 2024 Sep;37(3):171-181.
- 53. Keizer AA, Arkenbosch JHC, Kong VY, Hoencamp R, Bruce JL, Smith MTD, Clarke DL. Blunt and Penetrating Liver Trauma have Similar Outcomes in the Modern Era. Scand J Surg. 2021 Jun;110(2):208-213.
- 54. Zargaran D, Zargaran A, Khan M. Systematic Review of the Management of Retro-Hepatic Inferior Vena Cava Injuries. Open Access Emerg Med. 2020;12:163-171.
- 55. Góes AMO, Abib SCV, Kleinsorge GHD, Vieira DAAR, Nakano LCU. Treatment of penetrating injuries of the retrohepatic vena cava: systematic review protocol. J Vasc Bras. 2024;23:e20240003.
- 56. Saviano A, Ojetti V, Zanza C, Franceschi F, Longhitano Y, Martuscelli E, Maiese A, Volonnino G, Bertozzi G, Ferrara M, La Russa R. Liver Trauma: Management in the Emergency Setting and Medico-Legal Implications. Diagnostics (Basel). 2022 Jun 13;12(6)
- 57. Hughes M, Perkins Z. Outcomes following resuscitative thoracotomy for abdominal exsanguination, a systematic review. Scand J Trauma Resusc Emerg Med. 2020 Feb 06;28(1):9.
- 58. Taheri BD, Fisher AD, Eisenhauer IF, April MD, Rizzo JA, Guliani SS, Flarity KM, Cripps M, Bebarta VS, Wohlauer MV, Schauer SG. The employment of resuscitative endovascular balloon occlusion of the aorta in deployed settings. Transfusion. 2024 May;64 Suppl 2:S19-S26.
- 59. Nekooei N, Huang W, Mitchao D, Biswas S, Siletz A, Demetriades D. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in penetrating abdominal vascular injuries is associated with worse outcomes. Am J Surg. 2025 Feb;240:116122.
- 60. Ko HJ, Koo HF, Al-Saadi N, Froghi S. A comparison of mortality and indicators of treatment success of resuscitative endovascular balloon occlusion of aorta (REBOA): a systematic review and meta-analysis. Indian J Thorac Cardiovasc Surg. 2023 Jan;39(1):27-36.
- 61. Joseph B, Demetriades D. REBOA in trauma: a life-saving intervention or a spectacular failure? Eur J Trauma Emerg Surg. 2024 Dec;50(6):2689-2695.
- 62. Pau L, Navez J, Cawich SO, Dapri G. Laparoscopic Management of Blunt and Penetrating Abdominal Trauma: A Single-Center Experience and Review of the Literature. J Laparoendosc Adv Surg Tech A. 2021 Nov;31(11):1262-1268.

- 63. Kim DH, Kim M, Lee DS, Hong TH, Park H, Cho H. Role of laparoscopic surgery in managing hemodynamically stable abdominal trauma patients: a single level I trauma center, propensity score matching study. Eur J Trauma Emerg Surg. 2024 Oct;50(5):2517-2525.
- 64. Park YC, Jo YG, Ki YJ, Kang WS, Kim J. Efficacy and Safety of Laparoscopy for Mild and Moderate Pediatric Abdominal Trauma: A Systematic Review and Meta-Analysis. J Clin Med. 2022 Mar 31;11(7)
- 65. Vasquez M, Dhillon NK, Feliciano DV, Scalea TM. The fallacy of a roadmap computed tomography after an abdominal gunshot wound: A road that leads to nowhere. J Trauma Acute Care Surg. 2024 Nov 01;97(5):785-790.
- 66. Mallick T, Hasan M. Analysis of outcomes of penetrating colonic injuries managed with or without fecal diversion. Sci Rep. 2024 Dec 03;14(1):30048.
- 67. Fonseca MK, Patino LDG, DA-Cunha CEB, Baldissera N, Crespo ARPT, Breigeiron R, Gus J. Assessment of trauma scoring systems in patients subjected to exploratory laparotomy. Rev Col Bras Cir. 2020;47:e20202529.
- 68. Tuşat M, Özmen İ, Demirtaş MS, Ateş C, Öztürk AB, Kankılıç NA, Başar D. Risk factors for mortality and morbidity in Syrian refugee children with penetrating abdominal firearm injuries: an 1-year experience. Ulus Travma Acil Cerrahi Derg. 2023 Sep;29(9):1051-1060.
- 69. Kim HH, Kim JH, Park CY, Cho HM. Scoring system for traumatic liver injury (SSTLI) in polytraumatic patients: a predictor of mortality. Eur J Trauma Emerg Surg. 2015 Aug;41(4):375-85.
- Braschi C, Keeley JA, Balan N, Perez LC, Neville A. Outcomes of Highest Grade (IV and V) Liver Injuries in Blunt and Penetrating Trauma. Am Surg. 2022 Oct;88(10):2551-2555.
- 71. Chen AZL, Lee TH, Hsu J, Pang T. "The armor phenomenon" in obese patients with penetrating thoracoabdominal injuries: A systematic review and meta-analysis. J Trauma Acute Care Surg. 2022 Sep 01;93(3):e101-e109.
- Cromwell PM, Reynolds IS, Heneghan HM, Glasgow SM. Obesity and outcomes in trauma - a systematic review and metaanalysis. Injury. 2023 Feb;54(2):469-480.
- 73. Nasa P, Wise RD, Smit M, Acosta S, D'Amours S, Beaubien-Souligny W, Bodnar Z, Coccolini F, Dangayach NS, Dabrowski W, Duchesne J, Ejike JC, Augustin G, De Keulenaer B, Kirkpatrick AW, Khanna AK, Kimball E, Koratala A, Lee RK, Leppaniemi A, Lerma EV, Marmolejo V, Meraz-Munoz A, Myatra SN, Niven D, Olvera C, Ordoñez C, Petro C, Pereira BM, Ronco C, Regli A, Roberts DJ, Rola P, Rosen M, Shrestha GS, Sugrue M, Velez JCQ, Wald R, De Waele J, Reintam Blaser A, Malbrain MLNG. International

- cross-sectional survey on current and updated definitions of intra-abdominal hypertension and abdominal compartment syndrome. World J Emerg Surg. 2024 Nov 29;19(1):39.
- 74. Alsadery HA, Alzaher MZ, Osman AGE, Nabri M, Bukhamseen AH, Alblowi A, Aldossery I. Iliopsoas Hematoma and Abscess Formation as a Complication of an Anterior Abdominal Penetrating Injury: a Case Report and Review of Literature. Med Arch. 2022 Aug;76(4):308-312.
- 75. Kim D, Nam S, Lee YH, Lee H, Kim HC. Experience of vascular injuries at a military hospital in Korea. J Trauma Inj. 2024 Sep;37(3):182-191.