

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/202522225

Comprehensive Clinical Management of Atrial Septal Defect: A Multidisciplinary Approach Bridging Nursing, Radiology, and Laboratory Sciences

Nouf Ibrahim Ahmad Alknani $^{(1)}$, Ali Humood Salah Alharbi $^{(2)}$, Ahlam Abdullah Hakami $^{(3)}$, Al Anoud Abdullah Al Qarni $^{(4)}$, Abdullah Khalif Alanazi $^{(5)}$, Alfaten Khalf Alshammri $^{(6)}$, Eman Kuliab Aldhafeery $^{(7)}$, Amnah Hassan Ahmed Asuni $^{(8)}$, Tuqa Musaad Alahmadi $^{(9)}$, Ibrahim Ahmed Khabrani $^{(10)}$, Abdullrahman Saad Rathaan Aldhafeeri $^{(11)}$, Jaiz Nahi Nawi Aldoferi $^{(12)}$, RAHMAH TANI SHARA AL DOSARI $^{(13)}$

- (1) Eradah Psychiatric Hospital , Ministry of Health, Saudi Arabia,
- (2) Eradah Mental Health Complex, Jeddah, Ministry of Health, Saudi Arabia,
- (3) Eradah & Psychiatric Hospital Jazan Health Cluster, Ministry of Health, Saudi Arabia,
- (4) Prince Sultan Health Center, Al Ahmadiyya, Ministry of Health, Saudi Arabia,
- (5) AL Yammamah Hospital , Ministry of Health, Saudi Arabia,
- (6) Hospital Alyamamah, Ministry of Health, Saudi Arabia,
- (7) Al Yamamah Hospital , Ministry of Health, Saudi Arabia,
- (8) Irada And Mental Health Complex, Ministry of Health, Saudi Arabia,
- (9) Ohud Hospital, Ministry of Health, Saudi Arabia,
- (10) Jazan Health Cluster, Ministry of Health, Saudi Arabia,
- (11) Erada And Mentel Health Hospital Ln Hafar Albatin, Ministry of Health, Saudi Arabia,
- (12) King Khalid General Hospital, Ministry of Health, Saudi Arabia,
- (13) Wadi Al-Dawasir General Hospital Wadi Al-Dawasir, Ministry of Health, Saudi Arabia.

Abstract

Background: Atrial Septal Defect (ASD) is a common congenital heart anomaly characterized by a persistent interatrial communication, leading to a left-to-right shunt. If left untreated, significant defects can cause right heart volume overload, pulmonary hypertension, atrial arrhythmias, and heart failure.

Aim: This article aims to provide a comprehensive overview of the clinical management of ASD, emphasizing a multidisciplinary approach that integrates insights from nursing, radiology, and laboratory sciences to optimize patient outcomes from diagnosis through long-term follow-up.

Methods: The review synthesizes current knowledge on ASD, covering its etiology, epidemiology, pathophysiology, and clinical presentation. It details the diagnostic evaluation, primarily via transthoracic and transesophageal echocardiography, with advanced cross-sectional imaging (CT/MRI) for complex cases. Management strategies, including conservative surveillance, percutaneous device closure for suitable secundum defects, and surgical repair for complex anatomies, are examined.

Results: Small ASDs may close spontaneously, but hemodynamically significant defects (Qp/Qs >1.5) require intervention to prevent complications. Percutaneous closure is effective for secundum defects with adequate rims, while surgical repair is necessary for primum, sinus venosus, and coronary sinus defects. Timely closure typically leads to reverse right heart remodeling and excellent long-term prognosis, whereas delayed treatment risks irreversible pulmonary vascular disease (Eisenmenger syndrome).

Conclusion: Effective ASD management relies on accurate anatomic and hemodynamic assessment to guide intervention. A coordinated, multidisciplinary team is essential for timely diagnosis, appropriate selection of closure method, and lifelong patient surveillance to prevent complications and ensure optimal quality of life.

Keywords: Atrial Septal Defect, Congenital Heart Disease, Echocardiography, Percutaneous Closure, Surgical Repair, Pulmonary Hypertension, Multidisciplinary Care..

Introduction

Atrial septal defect (ASD) is among the most frequently encountered congenital heart anomalies, characterized by a persistent communication between the right and left atria after birth and affecting about 25% of children (see Image. Atrial Septal Defect).[1] The defect reflects incomplete formation of the true septal membrane or associated structural abnormalities that preserve interatrial flow, producing a left-to-right shunt whose magnitude depends on

Saudi Journal of Medicine and Public Health (SJMPH) ISSN 2961-4368

defect size and ventricular compliance.[1] Sustained shunting results in right-sided volume overload, increased pulmonary blood flow, and progressive remodeling that, if unaddressed, may culminate in pulmonary vascular disease and right heart failure.[1] From most to least frequent, the five principal forms are patent foramen ovale (PFO) and ostium secundum, followed by ostium primum, sinus venosus, and coronary sinus defects, each with distinct anatomic substrates and implications for imaging and repair.[2] Ostium secundum lesions typically involve the fossa ovalis region, whereas primum defects align with the atrioventricular junction and may coexist with valvular malformations; sinus venosus defects often associate with partial anomalous pulmonary venous return, and coronary sinus defects reflect unroofing along the atrioventricular groove.[2] Recognition of these variants directs selection of diagnostic modalities and informs procedural planning.[2]

Clinically, small ASDs may remain silent and are prone to spontaneous closure throughout childhood, warranting longitudinal surveillance rather than immediate intervention.[1] In contrast, larger or hemodynamically significant defects manifest with exercise intolerance, fixed splitting of S2, right ventricular dilatation on echocardiography, and radiographic signs of pulmonary overcirculation.[1] Transthoracic echocardiography with color Doppler is the cornerstone of diagnosis, complemented by transesophageal echocardiography or advanced crosssectional imaging when rims are inadequate or venous anomalies are suspected.[2] Definitive management is tailored to anatomy and physiology: percutaneous device closure is preferred for suitable secundum defects, whereas surgical repair addresses primum, sinus venosus, coronary sinus, or complex secundum lesions with deficient rims.[2] Timely closure mitigates major complications—including paradoxical embolic stroke, atrial dysrhythmias, and pulmonary hypertension—thereby improving functional capacity and long-term survival.[1][2] Multidisciplinary coordination across nursing, radiology, and laboratory services optimizes screening, peri-procedural care, and outcome monitoring throughout the patient's course.[1][2] **Etiology:**

Atrial septal defects (ASDs) are congenital anomalies that can occur as isolated lesions or in association with a range of genetic and environmental factors influencing cardiac morphogenesis. Although many ASDs present as singular structural defects, they are often linked to broader genetic and developmental pathways involving Mendelian inheritance. chromosomal abnormalities, transcriptional dysregulation, and teratogenic maternal exposures during gestation. The complexity of ASD etiology underscores the multifactorial interplay between inherited susceptibility and environmental triggers, leading to impaired septal formation and incomplete closure of the foramen ovale after birth.[3] From a

genetic perspective, ASDs are commonly seen in association with several syndromic conditions, including Down syndrome (trisomy 21), Treacher-Collins syndrome, thrombocytopenia-absent radius (TAR) syndrome, Turner syndrome (monosomy X), and Noonan syndrome, among others. These syndromes exemplify the contribution of Mendelian and chromosomal inheritance patterns to defective cardiac septation. In Down syndrome, the presence of an extra chromosome 21 disrupts endocardial cushion formation, leading to both atrial and ventricular septal defects. Similarly, Noonan and Turner syndromes, which involve mutations in the RAS-MAPK pathway and sex chromosome abnormalities respectively, are associated with structural heart defects, including ASDs and left-sided obstructive lesions. These syndromic associations emphasize the role of heritable developmental signaling pathways in cardiac morphogenesis.[3]

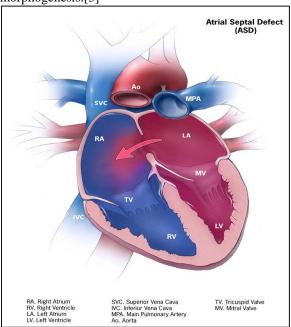


Figure-1: Atrial Septal Defect.

Environmental and maternal influences further modulate the risk of ASD development. Teratogenic exposures during early gestation particularly maternal infection with rubella virus, and use of cocaine, alcohol, or antiepileptic drugs—can interfere with critical steps in embryonic cardiac development. Rubella embryopathy, for example, induces endocardial damage and disrupts septal cell migration, predisposes to ASD formation. Similarly, maternal alcohol use has been implicated in fetal alcohol syndrome, where defective neural crest migration and mesenchymal proliferation contribute to both cardiac and craniofacial malformations. These findings illustrate that non-genetic factors, when superimposed on a genetically susceptible can background, dramatically alter cardiac morphogenesis and lead to clinically significant septal defects.[3] At the molecular level, atrial septation is

governed by a network of cardiac transcription factors that regulate gene expression and cell differentiation during embryogenesis. Key among these are GATA4, NKX2-5, and TBX5, all of which play essential roles in the formation and closure of the interatrial septum.[3] Mutations in these transcription factors are strongly correlated with familial forms of ASDs and conduction abnormalities. For instance, Holt-Oram syndrome, also known as "heart-hand syndrome," is characterized by congenital heart defects-most commonly ASDs in approximately 58% of cases and ventricular septal defects (VSDs) in 28%—in conjunction with upper limb deformities affecting the hands and wrists. This syndrome is linked to TBX5 gene mutations, which disrupt transcriptional regulation of cardiac and skeletal development. Likewise, NKX2-5 mutations are associated with both atrial and ventricular septal defects, tetralogy of Fallot, system conduction disease, atrioventricular block and juvenile sudden cardiac death. GATA4, acting in concert with these genes, is crucial for myocardial differentiation, and its disruption contributes to isolated or syndromic forms of ASD.[3]

Beyond genetic and molecular determinants, ASDs frequently coexist with other congenital cardiac anomalies, notably ventricular septal defects (VSDs), underscoring their shared embryological origin in septal development.[4] In certain complex congenital heart diseases, the presence of an ASD is not merely incidental but physiologically compensatory, providing an essential communication between the systemic and pulmonary circulations. Conditions such as tricuspid atresia, transposition of the great arteries, hypoplastic left heart syndrome, pulmonic or tricuspid atresia with hypoplastic right heart, and total anomalous pulmonary venous return depend on the interatrial shunt created by an ASD to sustain oxygenated blood flow and systemic perfusion until definitive surgical correction can be performed.[4] In these cases, the ASD serves as a critical "lifeline," maintaining circulatory balance during the neonatal period. Overall, the etiology of atrial septal defects is a reflection of intricate interactions among genetic, molecular, and environmental influences. Understanding these mechanisms is vital not only for elucidating the pathogenesis of congenital heart disease but also for guiding prenatal counseling, early detection, and individualized therapeutic planning. The combined insights from genetic testing, advanced imaging, and laboratory diagnostics allow for comprehensive evaluation, fostering interventions and improved outcomes for patients with ASD.[3][4]

Epidemiology

The epidemiology of atrial septal defect (ASD) reflects both historical trends in diagnostic capacity and evolving demographic and environmental influences on congenital heart disease

(CHD) overall. Over the past five decades, the reported prevalence of CHD has risen significantly, reflecting improvements in prenatal screening, echocardiographic technology, and postnatal surveillance programs rather than a true increase in disease occurrence. In the 1930s, congenital heart disease was identified in fewer than 1 per 1,000 live births; however, contemporary data indicate a prevalence approaching 9 per 1,000 live births, signifying nearly a tenfold increase in detection rates.[5] Within this broader category, ASDspreviously recognized in fewer than 0.5 per 1,000 live births between 1945 and 1949—are now estimated to occur in approximately 1.6 per 1,000 live births, a pattern consistent with the global expansion of advanced diagnostic modalities and specialized cardiac care services.[5] The perceived rise in ASD prevalence can be largely attributed to the widespread of two-dimensional and Doppler echocardiography, which precise allows for delineation of atrial septal anatomy and detection of even small interatrial communications that might have gone unnoticed in earlier decades. The proliferation of prenatal ultrasonography and fetal echocardiography has also contributed to earlier recognition of congenital heart anomalies, leading to improved registry data and more accurate epidemiologic reporting.[5] Furthermore, enhanced clinician training and broader access to cardiac imaging in community and tertiary care settings have increased the likelihood of diagnosis across all age groups, including asymptomatic adults with previously undetected lesions.

Sociodemographic and environmental determinants further shape the distribution of ASD cases worldwide. Advanced maternal age has emerged as a significant risk factor for congenital heart malformations, possibly related to age-associated chromosomal anomalies and metabolic changes affecting embryonic development.[6] Regional and economic disparities also influence reported prevalence, as individuals in developed, high-income countries have greater access to comprehensive prenatal and neonatal care, resulting in higher rates of diagnosis and registry inclusion. Conversely, underreporting remains a challenge in low- and middle-income nations, where limited diagnostic infrastructure and constrained healthcare resources impede detection and follow-up of congenital heart disease. Globally, ASDs account for approximately 10% of all congenital heart defects, ranking among the most frequent lesions encountered in both pediatric and adult cardiology populations.[5][6] While small ASDs may remain clinically silent and spontaneously close during childhood, larger or persistent defects increasingly present in adulthood due to the growing survival of children with congenital heart disease into later life. This epidemiologic shift underscores the need for lifelong surveillance and multidisciplinary

care, bridging pediatric, radiologic, and nursing specialties to monitor long-term outcomes and manage potential complications such as arrhythmias and pulmonary hypertension. In summary, the epidemiology of atrial septal defect reflects not only true biological patterns but also the evolution of diagnostic precision and health system capacity. Continued surveillance, equitable access to imaging technologies, and standardized reporting are essential to accurately assess global trends and optimize care delivery for affected populations.[5][6]

Pathophysiology

Atrial septal defect (ASD) pathophysiology begins with the embryologic choreography of atrial septation, a process that unfolds in the fourth week of gestation and depends on precisely timed growth, fusion, and resorption events within the primitive atrium.[7] The septum primum descends from the atrial roof toward the atrioventricular endocardial cushions, its caudal margin capped by a mesenchymal proliferation derived from the endocardium—the mesenchymal cap—which stabilizes the leading edge assists alignment with the endocardial cushions.[7] As the septum primum advances and ultimately fuses with these cushions, communication known as the ostium primum closes, completing the first major partition of the common atrium. Concomitantly, dorsal attachments to the dorsal mesenchymal protrusion consolidate septal anchoring, and-critically-programmed cell death within the dorsal portion of the septum primum opens a new window, the ostium secundum, preserving interatrial flow during fetal life as the initial gap disappears.[7] To the right of the septum primum, the septum secundum develops as a thicker, crescentic ridge growing caudally from the atrial roof, overlapping the ostium secundum but intentionally leaving a slit-like channel. The staggered alignment of the flexible septum primum and the more rigid septum secundum creates the foramen ovale, a unidirectional fetal valve that channels oxygen-rich umbilical venous return from the inferior vena cava across the right atrium into the left atrium, effectively bypassing the high-resistance, fluid-filled fetal lungs.[7] At birth, the precipitous decline in pulmonary vascular resistance lowers right atrial pressure, while pulmonary venous return increases left atrial pressure; this reverses the fetal pressure gradient and presses the mobile septum primum against the septum secundum, functionally closing the foramen ovale and, over time, achieving anatomic fusion in most individuals.[7] Failure of this postnatal apposition and fusion results in a patent foramen ovale (PFO), a subclass of ostium secundum type communications that is not a defect of the "true" septal tissue but rather a persistent channel at the flapvalve interface.[7]

When the interatrial barrier remains deficient beyond a simple PFO, an ASD permits continuous or phasic left-to-right shunting after birth. The net direction and magnitude of shunt flow are governed by the balance of atrial pressures, ventricular compliances, and the geometry of the defect. Typically, left atrial pressure slightly exceeds right atrial pressure because of higher pulmonary venous inflow and the lower impedance of the systemic venous circulation into the right heart; thus, blood preferentially crosses from left to right, raising pulmonary blood flow and imposing a chronic volume load on the right atrium and right ventricle.[7] The hemodynamic significance is often summarized by the pulmonary-to-systemic flow ratio (Qp/Qs). When the ratio exceeds approximately 1.5:1, the shunt is deemed sufficiently large to drive pathologic remodeling and clinical sequelae, warranting consideration of closure in the absence of prohibitive pulmonary vascular disease.[7] Ostium secundum defects, the most common true ASDs, arise when resorption within the septum primum is excessive, the septum secundum is undersized or malpositioned, or the tissue rims around the fossa ovalis are incomplete. The resultant deficiency in the central atrial septum creates unobstructed communication and is frequently amenable to percutaneous device closure if sufficient surrounding rims are present for device stability.[7] Syndromic associations, including Noonan, Treacher-Collins, and thrombocytopenia-absent radii, reflect upstream developmental perturbations that also touch craniofacial and limb morphogenesis, underscoring the shared embryologic pathways that link cardiac septation to broader mesenchymal patterning.[7] Ostium primum defects, in contrast, represent a failure of the septum primum to fuse with the endocardial cushions, aligning them along the atrioventricular junction and functionally situating them within the spectrum of atrioventricular septal defects. These lesions often coexist with atrioventricular valve clefts or regurgitation because the same endocardial cushion tissues participate in valvular leaflet formation.[7]

Sinus venosus defects are distinctive in that they do not involve the membranous septum proper but instead reflect malalignment at the junctions where caval venous blood enters the right atrium. In the superior variant, the orifice of the superior vena cava straddles the atrial septal plane above the oval fossa and may drain partially into the left atrium; this pattern frequently coexists with partial anomalous pulmonary venous connection of the right upper pulmonary veins into the superior vena cava, compounding left-to-right shunting by adding pulmonary venous return to the right heart pathway.[8] The inferior variant, less common, involves a similar overriding by the inferior vena cava with potential anomalous connection of the right lower pulmonary vein into the caval system, again augmenting shunt volume and complicating hemodynamics.[8] The coronary sinus defect, finally, arises from unroofing of the coronary sinus—a shared wall defect between the left atrium and the coronary venous channel—which opens a communication that effectively functions as an interatrial shunt near the atrioventricular groove; because of its location and

venous involvement, it has unique implications for oxygenation, catheterization, and surgical strategy.[7] Across all anatomic types, the chronic pathophysiologic footprint of an ASD is right-sided volume overload driven by increased pulmonary blood flow. The right ventricle, optimized for handling volume rather than pressure, initially accommodates the increased preload through eccentric remodeling: chamber dilatation, augmented diastolic compliance, and preserved or enhanced stroke volume. The right atrium enlarges as it serves as a reservoir for augmented venous return and shunted left-to-right flow. Tricuspid annular dilatation and functional tricuspid regurgitation may ensue, further recycling volume within the right heart and perpetuating the cycle of dilatation. Over time, a sustained increase in flow through the pulmonary vascular bed stimulates structural changes in the pulmonary arterioles medial hypertrophy of smooth muscle, intimal proliferation, and, in advanced cases, plexiform lesions—elevating pulmonary vascular resistance.[7] As resistance rises, pulmonary artery pressures climb, and the right ventricle begins to face a combined volume and pressure load, compromising right ventricular-pulmonary arterial (RV-PA) coupling.

The progression from a purely volumeloaded, compliant pulmonary circulation to one with fixed, elevated resistance marks the turning point in ASD pathophysiology. When pulmonary pressures approach or exceed systemic pressures, the interatrial pressure gradient narrows and may reverse, allowing right-to-left shunting, particularly during transient events such as Valsalva, coughing, or hypoxic pulmonary vasoconstriction. Sustained reversal produces cyanosis, hypoxemia, and clubbing features of Eisenmenger physiology—at which point closure of the defect can be contraindicated because the shunt serves as a "pop-off" that preserves cardiac output in the face of intractable pulmonary hypertension.[7] Before reaching this advanced stage, however, many patients remain asymptomatic for years, with clinical clues limited to a fixed split second heart sound and a systolic murmur from augmented pulmonary flow. The silent nature hemodynamically relevant shunts explains why a subset present in adolescence or adulthood with subtle exercise intolerance or atrial arrhythmias. Atrial electrical remodeling accompanies enlargement. Right atrial dilatation and stretch alter conduction heterogeneity, shorten refractory periods, and facilitate reentrant tachyarrhythmias such as atrial flutter and atrial fibrillation. The longer the exposure to volume overload, the higher the arrhythmic burden, which in turn worsens hemodynamics by eliminating atrial contribution to ventricular filling and by promoting tachycardia-mediated cardiomyopathy. Conduction axis displacement and scarring around the fossa ovalis-whether from the defect itself or subsequent closure—can predispose to sinus node dysfunction or atrioventricular nodal reentry, necessitating vigilant rhythm surveillance even after anatomical correction.[7] In sinus venosus defects, the proximity to the sinoatrial node and caval tissue planes compounds this risk, and the frequent association with anomalous pulmonary venous return adds atrial stretch stimuli that amplify arrhythmic susceptibility.[8]

Beyond chamber remodeling arrhythmias, the shunt alters cardiopulmonary interaction and gas exchange. Increased pulmonary blood flow can widen the alveolar-arterial oxygen gradient during exertion by imposing a flow-diffusion limitation, while decreased effective systemic stroke volume to the left ventricle—due to shunting—may cap peak cardiac output, limiting exercise capacity. In infants and young children, the compensatory capacity is often adequate, but as body size and activity levels increase, the mismatch becomes more apparent. Subclinical myocardial changes, including right ventricular extracellular matrix remodeling and subtle systolic dysfunction detectable by strain imaging, can precede overt decreases in ejection fraction and portend reduced reserve under stress.[7] The dynamic nature of interatrial flow produces recognizable clinical patterns. Respiratory variation modulates venous return and transiently alters atrial pressure gradients, often accentuating right heart filling during inspiration and thereby modestly increasing shunt fraction in large defects. Postural changes and intrathoracic pressure swings influence transient rightto-left flow across a PFO, explaining orthostatic hypoxemia in rare "platypnea-orthodeoxia" presentations. Moreover, whenever right atrial pressure spikes briefly—during coughing, lifting, or Valsalva—microbubbles or thrombi can cross from venous to arterial circulation through a PFO or fenestrated secundum ASD, creating the substrate for paradoxical embolism; this risk is one rationale for closure in select stroke populations when other mechanisms are excluded.[7]

Radiologic and laboratory correlates parallel the hemodynamics. Chest radiography in significant shunts shows prominence of the main and branch pulmonary arteries and increased vascular markings, while electrocardiography may reveal right axis deviation or incomplete right bundle branch block as right ventricular volume load reshapes depolarization vectors. Transthoracic echocardiography quantifies right ventricular and right atrial enlargement, visualizes the defect, and estimates shunt magnitude; color Doppler demonstrates left-to-right flow, and saline contrast or agitated bubble studies detect transient or sustained right-to-left passage at rest and provocative maneuvers. Transesophageal echocardiography refines anatomical definition, especially for sinus venosus and coronary sinus defects, while cross-sectional CT or MRI proves invaluable in mapping anomalous pulmonary venous connections characteristic of sinus venosus lesions.[8]

Biomarkers of chronic volume load-natriuretic peptides—may be modestly elevated in larger shunts, reflecting myocardial stretch, and can assist in longitudinal tracking of reverse remodeling after closure.[7] Clinical pathophysiology also plays out during life stages that alter loading conditions. Pregnancy, with its 30-50% increase in plasma volume and cardiac output, augments left-to-right shunting and may unmask symptoms in previously compensated women; careful monitoring is needed to avoid hvpoxemia. thromboembolism. arrhythmias. In pulmonary disease or high-altitude hypoxic vasoconstriction exposure, elevates pulmonary pressures and can transiently reverse shunt direction, risking hypoxemia and paradoxical emboli. Conversely, successful closure rebalances flows, reduces right heart volumes, and initiates reverse remodeling; yet in long-standing defects, residual atrial scarring and electrical remodeling may sustain an arrhythmic substrate even after hemodynamics normalize, necessitating ongoing rhythm care.[7]

Each anatomic subtype contributes nuances that matter for pathophysiologic reasoning. In ostium primum defects, concomitant atrioventricular valve regurgitation increases right atrial and right ventricular volume load beyond the contribution of the interatrial shunt alone, steepening the trajectory toward pulmonary vascular remodeling. In sinus venosus defects, the frequent presence of partial anomalous pulmonary venous return routes already oxygenated blood back into the right heart, driving pulmonary flow disproportionately higher than predicted by the atrial orifice size alone and hastening right heart enlargement if uncorrected.[8] Coronary sinus defects, by unroofing the channel that drains the cardiac veins into the right atrium, generate interatrial mixing near the atrioventricular junction; this raises distinctive concerns about desaturation patterns, coronary venous anatomy, and procedural approach, especially when persistent left superior vena cava is present.[7] PFOs, although typically hemodynamically trivial in the absence of pulmonary hypertension, can become physiologically relevant in settings that episodically elevate right atrial pressure, convert transiently to right-to-left conduits, and permit venous thrombi or air to access the systemic arterial tree. Ultimately, the end stage of unchecked pathophysiology is the development of pulmonary hypertension and, in its most advanced form, Eisenmenger syndrome. Chronic exposure to high pulmonary flow transforms the pulmonary arteriolar tree from a compliant conduit into a muscularized, resistive circuit, increasing afterload on the right ventricle. As pulmonary pressures reach systemic levels, shunt direction reverses, and deoxygenated blood traverses the ASD into the left atrium, producing cyanosis, secondary erythrocytosis, and multi-organ sequelae of chronic hypoxemia. At this stage, the interatrial communication no longer represents a correctable lesion but a component of a fixed cardiopulmonary

disease in which closure may precipitate right ventricular failure by removing a decompression route.[7] Preventing this trajectory—through timely recognition of hemodynamically significant shunting, accurate anatomic classification, and appropriately selected closure—is the central therapeutic implication of ASD pathophysiology.

pathophysiology synthesis, ASD interweaves embryologic missteps with lifelong cardiopulmonary mechanics. The fourth-week origins of septation establish the architectural substrate: the postnatal pressure landscape dictates shunt direction and magnitude; and the cumulative burden of augmented pulmonary flow scripts the natural history from benign childhood murmurs to adult right heart remodeling, arrhythmia, and, in a minority, pulmonary vascular disease. Appreciating the distinctions among ostium secundum, ostium primum, sinus venosus, and coronary sinus defects is not merely academic; it is a practical compass for imaging, risk assessment, and intervention, particularly where sinus venosus variants portend associated anomalous venous return that meaningfully modifies shunt physiology.[8] Across this spectrum, careful correlation of clinical findings with echocardiographic and cross-sectional imaging, supported by judicious laboratory biomarkers, allows clinicians to quantify hemodynamic burden, anticipate complications, and intervene before irreversible pulmonary vascular remodeling ensues. integrated understanding grounds the contemporary approach to ASD—one that couples developmental anatomy with hemodynamic principles to optimize timing and mode of closure, protect right ventricular function, and avert the path to Eisenmenger physiology.[7][8]

History and Physical

Atrial septal defects (ASDs) are frequently silent in childhood and early adulthood, so many patients come to attention only incidentally or when exercise demands uncover limited cardiopulmonary reserve.[9] On examination, the pathognomonic finding is a soft, systolic ejection murmur best heard at the left upper sternal border—the pulmonic area in the second intercostal space—caused by increased flow across the pulmonic valve. Equally characteristic is the wide and "fixed" splitting of the second heart sound, reflecting prolonged right ventricular ejection from chronic left-to-right shunting and diminished respiratory variation in closure of the pulmonic component.[9] Additional clues include a right ventricular heave from volume loading, a middiastolic flow rumble at the lower left sternal border due to augmented tricuspid inflow, and a prominent, sometimes palpable P2 when pulmonary pressures begin to rise. Peripheral oxygen saturation is typically normal at rest, but exertion can reveal desaturation or disproportionate dyspnea relative to age and fitness level.[9] Because most ASDs are initially well tolerated, diagnosis is often delayed into the third to fifth decades, particularly for larger secundum or sinus

venosus defects that maintain substantial shunt volumes.[10] In this context, chronic right heart volume overload predisposes patients to exertional dyspnea, early fatigue, reduced work capacity, and palpitations from atrial tachyarrhythmias. Recurrent respiratory infections or "bronchitis" can be reported historically, reflecting increased pulmonary blood flow and airway reactivity. Without timely closure, larger defects are associated with progressive rightsided chamber dilatation, functional tricuspid regurgitation, pulmonary hypertension, and an overall increase in mortality risk.[10] Syncope is uncommon early but may arise with arrhythmias or advanced pulmonary vascular disease. On careful review, a history of migraine with aura, cryptogenic stroke, or transient ischemic attack-especially following documented deep venous thrombosis—should prompt consideration of paradoxical embolism through an interatrial communication.[10]

A rare but severe late complication is Eisenmenger syndrome, which evolves when sustained high pulmonary blood flow induces vascular remodeling, raising pulmonary vascular resistance until it approaches or exceeds systemic levels.[11] As right atrial and right ventricular pressures climb, net shunt direction can reverse, permitting deoxygenated blood to enter the systemic circulation with exertional cyanosis, clubbing, and secondary erythrocytosis. Patients describe progressive dyspnea on exertion, lightheadedness or syncope, and declining exercise tolerance; they may also experience hemoptysis and heightened susceptibility to infection. Physical findings in Eisenmenger physiology include loud single S2, signs of right heart failure (elevated jugular venous pressure, hepatic enlargement, peripheral edema), and central as well as peripheral cyanosis.[11] At this stage, closure of the defect is generally contraindicated because the interatrial communication functions as a pressure relief pathway for the right ventricle, and management focuses instead on targeted pulmonary vasodilator therapy and meticulous supportive care.[11] Symptom burden and timing correlate with defect size. Lesions <5 mm are often entirely asymptomatic and may be discovered during evaluation for unrelated issues.[9] By contrast, defects measuring 5–10 mm typically manifest in the fourth or fifth decade, when cumulative right heart remodeling and atrial stretch promote palpitations, atrial flutter, or atrial fibrillation; approximately one in five adults harboring an unrepaired ASD will have an atrial tachydysrhythmia preoperatively.[10] Larger defects tend to declare themselves earlier-often in the third decade—with exertional dyspnea, fatigue, and signs of right-sided failure such as peripheral edema and hepatomegaly. Any history of neurologic events out of proportion to vascular risk factors should heighten clinical suspicion for an ASD and motivate targeted cardiac evaluation.[9][10]

Evaluation

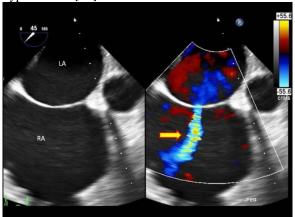

The evaluation of atrial septal defect (ASD) relies primarily on noninvasive imaging modalities that accurately define defect anatomy, assess hemodynamic significance, and guide therapeutic decisions. Transthoracic echocardiography (TTE) is the gold standard for diagnosis and follow-up, offering real-time visualization of the interatrial septum and shunt flow dynamics.[12] Two-dimensional and echocardiography Doppler provide precise information about the defect's size, shape, and location, the direction of flow across the septum, and the presence of associated structural abnormalities such as endocardial cushion defects, atrioventricular valve anomalies, or pulmonary venous connections. TTE also permits estimation of right-sided chamber enlargement, right ventricular function, pulmonary artery pressure, while quantitative Doppler assessment yields the pulmonary-to-systemic flow ratio (Qp/Qs)—a critical determinant of shunt significance and treatment need.[12] When standard transthoracic imaging is limited by suboptimal windows acoustic or complex anatomy, transesophageal echocardiography (TEE) provides superior spatial resolution. TEE is especially valuable for diagnosing less common ASD types—such as sinus venosus and coronary sinus defects—and for identifying multiple fenestrations or residual shunts following device closure. Doppler color flow imaging further delineates turbulent shunt jets and helps quantify flow direction and velocity. In contemporary clinical practice, TEE plays a crucial role in preprocedural planning for transcatheter closure, ensuring adequate rim tissue for device anchoring and excluding coexisting anomalies (see Image. Atrial Septal Defect on Ultrasound with Doppler Study).[12]

Figure-2: Ostium Secundum Atrial Septal Defect on Ultrasound.

Although echocardiography remains the advanced cross-sectional imaging cornerstone, enhances diagnostic precision. Cardiac computed tomography (CT) and magnetic resonance imaging (MRI) are particularly useful in assessing extracardiac anatomy, such as anomalous pulmonary venous return, caval venous relationships, and the overall morphology of the atrial septum and pulmonary

arteries. MRI has the added advantage of quantifying shunt fraction noninvasively and evaluating right ventricular volumes and function without radiation exposure. Chest radiography, though less specific, provides supportive information by showing cardiomegaly, prominent pulmonary arteries, and increased pulmonary vascular markings, which reflect chronic left-to-right shunting.[12] evaluation through exercise testing complements imaging findings by determining symptom severity, exercise tolerance, and the dynamic response of pulmonary pressures to physical activity. This test is particularly valuable in patients with borderline pulmonary hypertension or those being considered for closure. Conversely, cardiac catheterization—once routine—has become reserved for select cases where noninvasive modalities are inconclusive or when direct hemodynamic assessment is needed. In children and young adults with small, uncomplicated ASDs, catheterization is generally contraindicated, as the risks outweigh diagnostic benefits.[12] Collectively, the integration of echocardiographic, tomographic, and physiologic data provides a comprehensive understanding of ASD anatomy and physiology. Accurate evaluation enables timely decision-making, appropriate patient selection for device or surgical closure, and ongoing surveillance to prevent long-term complications such as arrhythmias and pulmonary hypertension.[12]

Figure-3: Atrial Septal Defect on Ultrasound with Doppler Study.

Treatment / Management

Management of atrial septal defects (ASDs) surveillance watchful for hemodynamically insignificant communications to percutaneous or surgical closure for larger or lesions. Clinical decision-making symptomatic integrates patient age, defect size and anatomy, rightsided chamber remodeling, shunt magnitude (Qp/Qs), pulmonary vascular resistance, and comorbid conditions such as atrial dysrhythmias or prior embolic events. In infants, defects smaller than 5 mm frequently undergo spontaneous closure within the first year of life, supporting a conservative approach with periodic clinical and echocardiographic

reassessment.[13] By contrast, defects larger than 1 cm rarely close spontaneously and are more likely to produce hemodynamically significant left-to-right shunts, right heart enlargement, and long-term complications; these typically warrant definitive closure once anatomic suitability and physiologic indications are established.[13] considerations are central to contemporary management. Patients who present with atrial dysrhythmias-most commonly atrial flutter or atrial fibrillation—benefit from initial stabilization of the arrhythmia and thromboembolic risk reduction before proceeding to ASD closure. Rate or rhythm control strategies and systemic anticoagulation reduce periinterventional stroke risk and improve hemodynamic stability; definitive closure is often scheduled after rhythm optimization, particularly when atrial enlargement and longstanding shunts have created a pro-arrhythmic milieu.[13] For adults with small defects and no evidence of right-sided volume overload, a strategy of surveillance is reasonable. Transthoracic echocardiography at intervals of every 2 to 3 years allows clinicians to monitor right atrial and right ventricular size, evaluate right ventricular function, and screen for increasing shunt fraction that might alter the risk-benefit balance toward closure.[14] A personal history of transient ischemic attack or stroke—especially in the setting of venous thromboembolism or when other causes are not apparent—warrants more aggressive evaluation and, in many cases, consideration of closure given the possibility of paradoxical embolism through an interatrial communication.[14]

The principal indications for ASD closure are a hemodynamically significant shunt (commonly defined as Qp/Qs > 1.5:1), right-sided chamber enlargement, symptoms attributable to the defect, systemic oxygen desaturation, and a history of cryptogenic stroke suggestive of paradoxical embolization.[13] When closure is indicated, clinicians weigh percutaneous transcatheter versus surgical approaches based on the type and morphology of the defect, the adequacy of septal rims for device anchoring, the presence of associated anomalies (e.g., anomalous pulmonary venous return), and patientspecific factors including age, comorbidities, and pregnancy plans. Percutaneous transcatheter closure is preferred when anatomy is favorable, as it is less and associated with lower overall complication rates for properly selected ostium secundum defects.[13] For secundum defects with adequate rim tissue (typically around the fossa ovalis), transcatheter devices achieve high success with fewer perioperative risks and shorter recovery times. In contemporary cohorts, the overall complication risk following percutaneous closure is approximately 7.2%, notably lower than the roughly 24% reported following surgical repair in mixed populations, although absolute rates vary with patient selection and institutional expertise.[13] Transcatheter closure is not

universally applicable. Contraindications include small, hemodynamically insignificant ASDs where no benefit accrues from closure; ostium primum, sinus venosus, and coronary sinus defects whose anatomy does not provide adequate tissue rims; complex secundum defects with deficient rims; and cases complicated by advanced pulmonary hypertension where elevated pulmonary vascular resistance negates hemodynamic benefit or risks destabilization after closure.[15] Even in anatomically suitable candidates, clinicians counsel patients regarding potential devicerelated complications, including new or worsened atrial arrhythmias, atrioventricular block, device embolization, cardiac erosion, thromboembolism, and residual shunt. Postprocedural care typically includes antiplatelet therapy for six months to mitigate devicerelated thrombosis during endothelialization, with follow-up imaging to confirm device position and exclude residual leak.[15] Women with large unrepaired ASDs and particularly those with Eisenmenger syndrome are advised to avoid pregnancy because the hemodynamic shifts of gestation may aggravate pulmonary hypertension and precipitate dysrhythmias or right heart failure.[15]

Surgical repair remains the gold standard for non-secundum defects and for secundum lesions unsuitable for device closure. Surgical strategies are tailored to the defect and associated anatomic features. For secundum ASD and PFO, median sternotomy provides exposure for safe cannulation, institution of cardiopulmonary bypass, and patch closure—often with autologous pericardium—to achieve a tensionfree repair that preserves surrounding structures including the tricuspid valve, coronary sinus, and conduction tissue.[16] Myocardial protection with cardioplegia and meticulous inspection of the interatrial septum help ensure complete closure iatrogenic injury. Intraoperative without transesophageal echocardiography—including bubble study-confirms patch integrity and the absence of residual interatrial flow before separation from bypass.[16] Sinus venosus ASDs, particularly the superior variant frequently associated with partial anomalous pulmonary venous drainage of the right upper pulmonary veins into the superior vena cava (SVC), demand careful operative planning to reconstruct venoatrial connections while preventing venous obstruction or conduction disturbances.[16] Depending on the anatomy, surgeons may employ single-patch or two-patch techniques to baffle pulmonary venous return into the left atrium while maintaining unobstructed systemic venous drainage. The Warden procedure—which reroutes the SVC to the right atrial appendage and uses an intra-atrial baffle to direct anomalous pulmonary venous flow to the left atrium—offers durable results when performed with attention to a tension-free anastomosis and protection of structures such as the phrenic nerve and sinoatrial node to avoid SVC obstruction or sinus node dysfunction.[16] For inferior sinus venosus defects with anomalous inferior pulmonary venous connections, analogous principles apply, emphasizing relief of any potential venous pathway conflict and precise intracardiac baffling to the left atrium.[16]

Primum ASDs, which lie at the crux of the atrioventricular junction and share embryologic tissue with the endocardial cushions, require a different strategy. Repair typically involves suturing a patch to valve tissue with scrupulous avoidance of the atrioventricular conduction system and protection of the underlying ventricular septum.[17][18] Because the atrioventricular valves often exhibit clefts or regurgitation in this setting, mitral valve cleft repair (and occasionally tricuspid valve intervention) is frequently performed concomitantly to restore competence and optimize long-term hemodynamics.[17][18] An understanding of the spatial relationship between the patch, the valve leaflets, and the conduction tissue is vital to minimize postoperative heart block and the need for pacing. In parallel with conventional sternotomy, minimally invasive approaches have matured and are increasingly used in carefully selected patients. Transxiphoid, ministernotomy, and transaxillary routes can reduce surgical trauma, shorten convalescence, and improve cosmetic outcomes, while still allowing safe cannulation and exposure for patch placement.[19][20][21][22] Robot-assisted thoracoscopic techniques further reduce access morbidity, though they require specialized expertise and equipment and may not be suitable for small children with limited femoral vessel caliber for peripheral cannulation.[19][20][21][22] Across these methods, patient selection is paramount; the goals are complete defect closure, maintenance of unobstructed venous and valve function, and preservation of conduction integrity.

Although contemporary outcomes are excellent, providers should counsel patients about potential surgical complications, which—while uncommon—include patch dehiscence, residual shunting, thromboembolism, arrhythmias (including sinus node dysfunction in sinus venosus repairs), and, rarely, obstruction of the SVC or pulmonary venous pathways after complex reconstructions.[23][24] In individuals with pulmonary hypertension, a carefully titrated strategy may be required. For some, complete closure risks abrupt increases in right-sided pressures and reduced cardiac output; in these cases, surgeons may perform a fenestrated patch, leaving a small residual communication that functions as a controlled "pop-off" to protect the right ventricle while pulmonary vasodilator therapy and remodeling proceed.[23][24] Postoperative management emphasizes hemodynamic monitoring, rhythm surveillance, and early mobilization, with structured follow-up to document right-sided reverse remodeling and confirm the absence of venous or valve

obstruction. Beyond the mechanics of closure, comprehensive care involves lifecycle surveillance and risk modification. Following successful percutaneous or surgical repair of a hemodynamically significant secundum ASD, right atrial and right ventricular volumes typically regress over months, symptoms abate, and exercise capacity improves. However, adults—especially those repaired later in life-may retain a substrate tachydysrhythmias because structural and electrical remodeling can persist despite normalized flows. Accordingly, long-term follow-up should include periodic rhythm assessment, counseling on stroke warning signs, and management of conventional cardiovascular risk factors. For women of childbearing age, preconception counseling is essential: while most patients with repaired ASDs tolerate pregnancy well, those with residual pulmonary hypertension or prior Eisenmenger physiology face substantial risk and require multidisciplinary planning or avoidance of pregnancy altogether.[15]

Special clinical scenarios merit additional nuance. In patients with cryptogenic stroke where evaluation suggests paradoxical embolism and no alternative mechanism, closure of an interatrial communication can be considered, particularly when the anatomy is favorable for transcatheter repair; antithrombotic therapy before and after closure is individualized based on thrombosis risk and device protocols.[13][15] Athletes with large shunts and right heart enlargement should be evaluated for closure to reduce arrhythmic risk and optimize cardiopulmonary performance, while those with hemodynamically trivial defects can often participate fully with periodic oversight. For patients with concomitant valvular disease (e.g., significant tricuspid regurgitation from annular dilation), addressing the valve at the time of ASD surgery may enhance symptom relief and prevent recurrent rightsided remodeling.[17][18] The post-closure imaging regimen depends on the modality of repair and clinical evolution. After transcatheter closure, echocardiography is repeated to confirm device position, rule out residual shunt, and track right-sided dimensions; short-term antiplatelet therapy is maintained for endothelialization, and endocarditis prophylaxis is generally limited to the immediate postimplant period for device carriers undergoing highrisk procedures.[15] After surgical repair, early and intermediate echocardiographic follow-up evaluates patch integrity, atrioventricular valve function particularly in primum repairs—and venous pathway patency after sinus venosus reconstructions. In both groups, the frequency of long-term surveillance aligns with symptoms, rhythm status, and any residual hemodynamic concerns, with every 2-3 year intervals often adequate for stable adults absent new findings.[14]

Taken together, ASD management is a prototypical example of anatomy-driven, physiology-

informed care. Small defects—especially in infants are often monitored expectantly given high rates of closure spontaneous and the absence remodeling.[13] Large or symptomatic defects, or those producing Qp/Qs > 1.5:1 and right-sided enlargement, generally require closure to prevent arrhythmias, pulmonary hypertension, and right heart failure.[13] For ostium secundum defects with suitable rims, percutaneous transcatheter closure offers a compelling risk-benefit profile, including fewer complications than surgery and faster recovery.[13] When anatomy is unfavorable or when the lesion is primum, sinus venosus, or coronary sinus, surgical repair—ranging from straightforward patch closure to complex redirection procedures like the Wardenachieves excellent durability when tailored to individual anatomy and executed with careful attention to venous pathways, valvular competence, and conduction safety.[16][17][18][23][24] In the subset with pulmonary hypertension, strategies such as fenestrated closure and targeted vasodilator therapy can balance hemodynamic needs while averting decompensation.[23][24] Across these pathways, the aims are consistent: restore physiologic flow, relieve right-sided volume load, minimize arrhythmic and embolic risk, and safeguard long-term functional capacity through vigilant follow-up multidisciplinary coordination. Ultimately, ASDs occupy a broad clinical spectrum—from clinically silent lesions that close in infancy to hemodynamically important communications that, if neglected, may progress to pulmonary hypertension, cyanosis, and embolic events. The majority of small defects resolve spontaneously in early life, but large shunts with systemic desaturation or right-sided enlargement demand percutaneous or surgical intervention to alter the natural history favorably.[13][15] With modern imaging, device technology, and refined surgical techniques—including minimally invasive and robotic-assisted approaches—outcomes continue to improve, enabling personalized, anatomy-specific care that aligns the method and timing of closure with each patient's physiology and life goals.[19][20][21][22]

Differential Diagnosis

The differential diagnosis of atrial septal defects (ASDs) encompasses a range of congenital and acquired cardiac anomalies that can present with similar clinical and hemodynamic features. Distinguishing ASDs from other forms of shunt or obstructive pathology is crucial, as management strategies and prognoses vary widely. Among the most common mimickers is the ventricular septal defect (VSD), which also creates a left-to-right shunt but occurs at the ventricular level rather than the atrial level. In VSD, the murmur is typically harsher, pansystolic, and best heard at the lower left sternal border, in contrast to the softer systolic ejection murmur of ASD, which is accompanied by wide, fixed splitting of S2. Echocardiography remains the key

diagnostic tool for distinguishing these lesions and determining the shunt location and direction.[23][24] Another important group of differential diagnoses includes cyanotic congenital heart diseases, especially those associated with sinus venosus and coronary sinus defects. These variants can mimic typical ASDs clinically but are often associated with anomalous pulmonary venous drainage, leading to systemic desaturation rather than purely acyanotic shunting. Similarly, total anomalous pulmonary venous return (TAPVR) may initially resemble an ASD with rightsided volume overload; however, in TAPVR, all pulmonary venous blood drains anomalously into the systemic venous circulation, creating obligatory rightto-left shunting and evanosis, which are not features of uncomplicated ASDs.[23][24] Other conditions in the differential include pulmonary stenosis, truncus arteriosus, and tricuspid atresia. Pulmonary stenosis produces a systolic murmur similar in location but is distinguished by the absence of a fixed split S2 and the presence of right ventricular outflow obstruction. Truncus arteriosus and tricuspid atresia, both complex cyanotic defects, may present with right heart failure or hypoxemia but are characterized by distinct anatomic findings on echocardiography. comprehensive clinical evaluation—integrating auscultatory features, imaging findings, and oxygen saturation patterns—remains indispensable for differentiation. Correct identification prevents inappropriate interventions, optimizes use of healthcare resources, and ensures that patients receive timely and condition-specific treatment, thereby improving long-term outcomes.[23][24]

Prognosis

The prognosis for individuals with atrial septal defects (ASDs) is determined largely by defect size, anatomic subtype, the degree of right-sided volume overload, and the timeliness of recognition and intervention. Small secundum ASDs detected in infancy frequently close spontaneously and are associated with normal growth, development, and life expectancy without the need for intervention. By contrast, larger defects—particularly those producing a pulmonary-to-systemic flow ratio (Qp/Qs) ≥1.5:1 with right atrial and right ventricular enlargement create a substrate for progressive symptoms, atrial tachyarrhythmias, functional tricuspid regurgitation, and pulmonary vascular remodeling if left uncorrected. In such cases, early definitive closure interrupts the cascade from volume overload to pulmonary hypertension, reduces arrhythmic risk, and promotes reverse remodeling of the right heart, translating into excellent long-term functional outcomes for most patients. Prognosis is also influenced by age at diagnosis: children and young generally experience more remodeling after closure than individuals repaired later in life, who may retain a persistent arrhythmic substrate due to long-standing atrial stretch.

Importantly, the prognosis worsens when significant defects go untreated into mid-to-late adulthood, as cumulative right-sided strain and advancing pulmonary vascular disease raise the likelihood of heart failure, syncope, and reduced exercise capacity. The presence of paradoxical embolism—manifesting as transient ischemic attack or stroke-signals an additional preventable hazard, as closure lowers recurrent embolic risk in select patients. At the far end of the spectrum, a subset of patients progress to Eisenmenger physiology with right-to-left shunting and cyanosis; in this setting, pulmonary vascular disease is often irreversible, closure is typically contraindicated, and life expectancy is reduced despite supportive therapy. These observations underscore the central prognostic principle in ASD: timely identification and closure of hemodynamically significant defects yield favorable survival and quality of life, whereas sustained, uncorrected shunting carries the risk of permanent cardiopulmonary damage and shortened lifespan. [24]

Complications

The complications associated with ASDs arise from chronic left-to-right shunting, right-sided chamber enlargement, and—when prolonged remodeling of the pulmonary vasculature. Atrial tachydysrhythmias are among the most common late sequelae; atrial flutter and atrial fibrillation develop as dilated atrial tissue fosters reentry and conduction heterogeneity. These rhythms worsen hemodynamics by abolishing atrial contribution to ventricular filling precipitate and may tachycardia-mediated cardiomyopathy. Pulmonary arterial hypertension represents a more ominous downstream complication, driven by sustained high pulmonary blood flow that induces medial hypertrophy and intimal proliferation in small pulmonary arteries. If pulmonary vascular resistance rises sufficiently, right ventricular afterload increases, leading to right-sided congestive heart by peripheral edema, characterized hepatomegaly, ascites, and reduced exercise tolerance. Another complication is thromboembolism: in the presence of interatrial communication and transient elevations of right-sided pressure, venous thrombi can traverse to the systemic circulation and cause transient ischemic attack or ischemic stroke. Even absent overt embolism, long-standing volume overload predisposes to functional tricuspid regurgitation, progressive right ventricular dysfunction, and arrhythmia-related syncope. The rare but severe end point of uncorrected disease is Eisenmenger syndrome, in which pulmonary pressures approach or exceed systemic levels and shunt direction reverses to right-to-left, producing chronic cyanosis, secondary erythrocytosis, and multisystem hypoxemic complications. Iatrogenic risks also exist, including arrhythmias device-related or erosion transcatheter closure and postoperative conduction disturbances or venous pathway obstruction after surgical repair; vigilant follow-up mitigates these risks. Prevention hinges on early detection, appropriate surveillance of small defects, and timely intervention for hemodynamically significant shunts. By restoring physiologic flow, closure reduces the incidence of arrhythmias, heart failure, pulmonary hypertension, and embolic events, thereby improving long-term outcomes and quality of life for affected patients. [24]

Patient Education

Deterrence begins before birth with primary prevention strategies aimed at lowering the risk of congenital heart disease. Preconception counseling should emphasize avoidance of known teratogens particularly alcohol and certain medications—along with optimization of maternal health conditions such as diabetes and phenylketonuria. During pregnancy, routine prenatal care, vaccination where appropriate, and careful medication review help minimize fetal exposure to harmful agents. Families with a history of congenital heart disease benefit from genetic counseling to clarify recurrence risk, discuss the role of inheritable syndromes, and consider targeted fetal echocardiography when indicated. Secondary prevention centers on early recognition. Routine pediatric examinations, attention to heart murmurs, and prompt referral for echocardiography when symptoms or examination findings suggest a shunt allow identification of ASDs before irreversible remodeling occurs. For individuals diagnosed with ASDs, patient and family education should address the natural history of small versus large defects, the significance of right-sided enlargement, and the rationale for surveillance intervals. Clear guidance regarding symptoms—new palpitations, declining exercise tolerance, syncope, edema, or signs of heart failure—enables timely medical evaluation. Lifestyle advice includes maintenance of aerobic fitness as tolerated, adherence to guideline-directed therapy for arrhythmias, and risk-factor control for vascular disease. When closure is planned, pre-procedural counseling should outline the differences between percutaneous and surgical approaches, expected recovery, the temporary need for antiplatelet therapy after device implantation, and the importance of scheduled follow-up imaging. Education must also cover potential complications of delayed or absent treatment, including pulmonary hypertension, stroke from paradoxical embolism, and Eisenmenger physiology, to contextualize the benefits of timely intervention. Ultimately, a structured program of surveillance—paired with shared decision-making about the timing and modality of closure—prevents progression to severe complications and aligns therapy with patient preferences and life plans. [21][22][23]

Pearls and Other Issues

Several practical points can streamline evaluation and management. First, ASDs occupy a prominent place among congenital heart lesions encountered in clinical practice; while an oft-quoted figure suggests a prevalence around one quarter, that estimate more accurately reflects the frequency of patent foramen ovale rather than true atrial septal defects—an important distinction when counseling patients. Second, the ostium secundum defect is the most common true ASD and, when anatomic rims are adequate, is amenable to transcutaneous percutaneous closure; this minimally invasive approach offers high success with shorter recovery and fewer complications in properly selected cases. Third, not all ASDs are suited to catheter-based repair: ostium primum, sinus venosus, and coronary sinus defects generally require surgical correction because of their locations and associated venous or valvular anomalies. Fourth, transcutaneous percutaneous closure contraindicated in patients with significant pulmonary hypertension and elevated pulmonary vascular resistance, where removing the shunt can destabilize hemodynamics; careful hemodynamic assessment is essential before proceeding. Fifth, arrhythmias should be treated proactively. When atrial flutter or atrial fibrillation occurs, cardioversion with appropriate anticoagulation is reasonable; if sinus rhythm cannot plus maintained, rate control ongoing anticoagulation reduces thromboembolic risk. Sixth, clinicians should remember that Eisenmenger syndrome represents a late, preventable complication resulting from chronic left-to-right shunting and pulmonary vascular remodeling; once established. closure is typically contraindicated and management pivots to pulmonary vasodilator therapy supportive care. Finally, prevention spans the life course: primary prevention focuses on avoiding teratogens and optimizing maternal health, while secondary prevention prioritizes early detection, risk stratification, and timely repair with longitudinal follow-up to avert pulmonary hypertension, arrhythmias, or stroke. These pearls, taken together, provide a concise framework for recognizing when to watch, when to close, and how to counsel patients and families about prognosis and long-term care.

Enhancing Healthcare Team Outcomes

Optimal outcomes for patients with ASDs emerge from coordinated interprofessional care that begins in primary settings and extends through specialized cardiology and cardiothoracic programs. clinicians—pediatricians, Primary care physicians, internists, and nurse practitioners—are often the first to detect a murmur, exercise intolerance, or abnormal examination findings and should initiate referral for echocardiography and cardiology consultation. Cardiologists synthesize imaging and clinical data to stratify risk, determine shunt significance, and recommend surveillance or closure, while electrophysiologists contribute expertise in rhythm evaluation and management when atrial tachydysrhythmias are present. When intervention is indicated, collaboration with congenital cardiac interventionists and cardiothoracic surgeons ensures that the chosen modality—percutaneous device or surgical repair—aligns with defect anatomy, venous and valvular relationships, and patient-specific factors such as age, comorbidities, and reproductive plans. Throughout this process, nurses are pivotal in education, care coordination, and vigilant monitoring. They teach patients and families to recognize symptoms of decompensation-worsening dyspnea, palpitations, syncope, edema-and to understand postoperative expectations, medication adherence (e.g., temporary antiplatelet therapy after device placement), and the importance of scheduled followup. After repair, structured surveillance with periodic echocardiograms documents reverse remodeling and excludes residual shunting or venous pathway obstruction: concurrent rhythm monitoring identifies recurrent or new atrial arrhythmias that merit early treatment. For women with large ASDs and pulmonary hypertension, the team should counsel against pregnancy because gestational hemodynamics can precipitate deterioration. Open, bidirectional communication—case conferences, shared notes, and standardized care pathways—reduces delays, prevents redundant testing, and clarifies contingency plans for complications such as device embolization or postoperative conduction disturbances. Social workers and care navigators help address logistical barriers, from transportation to insurance authorization, that might otherwise disrupt surveillance. In sum, a deliberately integrated model—anchored in primary care recognition, cardiology-led risk stratification, procedure teams experienced in congenital disease, and nursing-driven education and follow-upconsistently lowers complication rates, shortens recovery, and improves patient-reported outcomes while aligning care with patient goals and family needs. [23][24]

Conclusion:

In conclusion, the management of Atrial Septal Defect (ASD) has been revolutionized by advanced diagnostic imaging and refined intervention techniques. The prognosis for patients with ASD is overwhelmingly positive when hemodynamically significant defects are identified and corrected in a timely manner. Percutaneous device closure offers a minimally invasive and highly effective solution for suitable ostium secundum defects, while sophisticated surgical techniques provide durable repairs for complex anatomic variants such as ostium primum and sinus venosus defects. The central tenet of modern care is the prevention of long-term sequelae, particularly irreversible pulmonary vascular disease and atrial arrhythmias, which are associated with delayed intervention. Crucially, optimal patient outcomes are dependent on cohesive, multidisciplinary team approach that spans primary cardiology, interventional radiology, cardiothoracic surgery, and nursing. This collaborative model ensures seamless care from initial diagnosis and risk stratification through procedural intervention and lifelong follow-up, ultimately safeguarding functional capacity and long-term survival for individuals with ASD.

References:

- Meissner I, Whisnant JP, Khandheria BK, Spittell PC, O'Fallon WM, Pascoe RD, Enriquez-Sarano M, Seward JB, Covalt JL, Sicks JD, Wiebers DO. Prevalence of potential risk factors for stroke assessed by transesophageal echocardiography and carotid ultrasonography: the SPARC study. Stroke Prevention: Assessment of Risk in a Community. Mayo Clin Proc. 1999 Sep;74(9):862-9.
- 2. Celermajer DS. Atrial septal defects: even simple congenital heart diseases can be complicated. Eur Heart J. 2018 Mar 21;39(12):999-1001.
- 3. Aoki H, Horie M. Electrical disorders in atrial septal defect: genetics and heritability. J Thorac Dis. 2018 Sep;10(Suppl 24):S2848-S2853
- 4. Torres AJ. Hemodynamic assessment of atrial septal defects. J Thorac Dis. 2018 Sep;10(Suppl 24):S2882-S2889.
- Chelu RG, Horowitz M, Sucha D, Kardys I, Ingremeau D, Vasanawala S, Nieman K, Paul JF, Hsiao A. Evaluation of atrial septal defects with 4D flow MRI-multilevel and inter-reader reproducibility for quantification of shunt severity. MAGMA. 2019 Apr;32(2):269-279.
- van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7.
- Kloesel B, DiNardo JA, Body SC. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesth Analg. 2016 Sep;123(3):551-69.
- 8. Naqvi N, McCarthy KP, Ho SY. Anatomy of the atrial septum and interatrial communications. J Thorac Dis. 2018 Sep;10(Suppl 24):S2837-S2847.
- 9. Naik RJ, Shah NC. Teenage heart murmurs. Pediatr Clin North Am. 2014 Feb;61(1):1-16.
- El-Segaier M, Pesonen E, Lukkarinen S, Peters K, Ingemansson J, Sörnmo L, Sepponen R. Atrial septal defect: a diagnostic approach. Med Biol Eng Comput. 2006 Sep;44(9):739-45.
- 11. Neema PK. Eisenmenger syndrome: an unsolved malady. Ann Card Anaesth. 2012 Oct-Dec; 15(4):257-8.
- 12. Martin SS, Shapiro EP, Mukherjee M. Atrial septal defects clinical manifestations, echo assessment, and intervention. Clin Med Insights Cardiol. 2014;8(Suppl 1):93-8.
- 13. Behjati-Ardakani M, Golshan M, Akhavan-Karbasi S, Hosseini SM, Behjati-Ardakani MA,

Saudi J. Med. Pub. Health Vol. 2 No. 2 (2025)

- Sarebanhassanabadi M. The Clinical Course of Patients With Atrial Septal Defects. Iran J Pediatr. 2016 Aug;26(4):e4649.
- 14. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, Del Nido P, Fasules JW, Graham TP, Hijazi ZM, Hunt SA, King ME, Landzberg MJ, Miner PD, Radford MJ, Walsh EP, Webb GD. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation. 2008 Dec 02;118(23):2395-451.
- 15. Yang MC, Wu JR. Recent review of transcatheter closure of atrial septal defect. Kaohsiung J Med Sci. 2018 Jul;34(7):363-369.
- Hopkins RA, Bert AA, Buchholz B, Guarino K, Meyers M. Surgical patch closure of atrial septal defects. Ann Thorac Surg. 2004 Jun;77(6):2144-9; author reply 2149-50.
- 17. Fasting H, Axelsen F, Søndergaard T. Atrial septal defect, primum type. Results of surgical closure in 46 patients. Scand J Thorac Cardiovasc Surg. 1980;14(2):165-8
- 18. Sadeghi AM, Laks H, Pearl JM. Primum atrial septal defect. Semin Thorac Cardiovasc Surg. 1997 Jan;9(1):2-7.
- 19. Ryan WH, Cheirif J, Dewey TM, Prince SL, Mack MJ. Safety and efficacy of minimally invasive atrial septal defect closure. Ann Thorac Surg. 2003 May;75(5):1532-4
- 20. Liang T, XiangJun Z, XiaoJing M, Yun L, Leng CY. New minimally invasive technique to occlude secundum atrial septal defect in 53 patients. Ann Thorac Surg. 2006 Apr;81(4):1417-9.
- Vida VL, Zanotto L, Zanotto L, Tessari C, Padalino MA, Zanella F, Pittarello D, Stellin G. Minimally invasive surgery for atrial septal defects: a 20-year experience at a single centre. Interact Cardiovasc Thorac Surg. 2019 Jun 01;28(6):961-967.
- 22. Vistarini N, Aiello M, Mattiucci G, Alloni A, Cattadori B, Tinelli C, Pellegrini C, D'Armini AM, Viganò M. Port-access minimally invasive surgery for atrial septal defects: a 10-year single-center experience in 166 patients. J Thorac Cardiovasc Surg. 2010 Jan;139(1):139-45.
- 23. Galal MO, Wobst A, Halees Z, Hatle L, Schmaltz AA, Khougeer F, De Vol E, Fawzy ME, Abbag F, Fadley F. Peri-operative complications following surgical closure of atrial septal defect type II in 232 patients--a baseline study. Eur Heart J. 1994 Oct;15(10):1381-4.
- 24. Gatzoulis MA, Freeman MA, Siu SC, Webb GD, Harris L. Atrial arrhythmia after surgical closure of atrial septal defects in adults. N Engl J Med. 1999 Mar 18;340(11):839-46.