

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub
https://doi.org/10.64483/202522231

Interprofessional Approaches to the Prevention and Management of Nosocomial Infections: Integrating Pharmacological, Administrative, and Nursing Perspectives

Khadijah Ahmad Abdallh Bin Zarah $^{(1)}$, Amnah Hamood Althalabi $^{(2)}$, Mohammed Muqbil Alqahtani $^{(3)}$, Saad Musaad Z Alotaibi $^{(4)}$, Saad Abdulaziz Alrabiah $^{(5)}$, Khalid Ayidh Muqbil Alotaibi $^{(6)}$, Mohammed Muqbil Alqahtani $^{(3)}$, Abdullah Faraj Hijab Al-Otaibi $^{(7)}$, Mohammed Ali Mousa Dreab $^{(8)}$, Zahra Ali Mohsin Alnakhli $^{(9)}$, Nadiyah Dallaj M Almutairi $^{(10)}$

- (1) Healte Administration And Hospital Bahra Healte Center, Ministry of Health, Saudi Arabia,
- (2) Bahra Healte Center, Ministry of Health, Saudi Arabia,
- (3) Rawidat Al-Ared General Hospital, Ministry of Health, Saudi Arabia,
- (4) Hospital Management, Ministry of Health, Saudi Arabia,
- (5) Shared Community Health Services, Ministry of Health, Saudi Arabia,
- (6) Taif Health Cluster, Ministry of Health, Saudi Arabia,
- (7) Health Center, Ministry of Health, Saudi Arabia,
- (8) Eradah Hospital For Mental Health In Jazan, Ministry of Health, Saudi Arabia,
- (9) Alharam Hospital Almadinah Almonwara, Ministry of Health, Saudi Arabia,
- (10) Wethilan Hospital, Ministry of Health, Saudi Arabia.

Abstract

Background: Healthcare-associated infections (HAIs) represent a major global public health challenge, contributing significantly to patient morbidity, mortality, and healthcare costs. These infections, acquired during the course of medical care, are frequently caused by multidrug-resistant organisms and are linked to invasive procedures and devices.

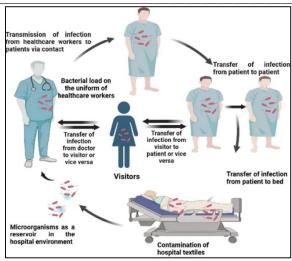
Aim: This article aims to synthesize a comprehensive, interprofessional approach to the prevention and management of HAIs, integrating the distinct yet complementary roles of pharmacological, administrative, and nursing perspectives to improve patient safety and outcomes.

Methods: The review consolidates evidence on the etiology, epidemiology, and pathophysiology of major HAIs—including central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), surgical site infections (SSI), and pneumonia (HAP/VAP). It evaluates management strategies centered on rapid diagnosis, source control, and targeted antimicrobial therapy, underpinned by robust infection prevention and control (IPC) protocols.

Results: Effective management hinges on a triad of rapid source control, timely and pathogen-directed antimicrobial therapy, and unwavering adherence to prevention bundles. Key outcomes include reduced infection rates, shorter hospital stays, lower mortality, and decreased antimicrobial resistance. The success of these measures is fundamentally dependent on seamless interprofessional collaboration.

Conclusion: A unified, interprofessional model is paramount for combating HAIs. This model integrates antimicrobial stewardship from pharmacists, rigorous implementation of IPC protocols by nursing staff, and supportive policy and resource allocation from administrators to create a safer healthcare environment.

Keywords: Healthcare-Associated Infections, Nosocomial Infections, Antimicrobial Stewardship, Infection Prevention and Control, Multidrug-Resistant Organisms, Interprofessional Collaboration


Introduction

Nosocomial infections, more commonly referred to as healthcare-associated infections (HAIs), represent a persistent and serious global public health challenge. They are defined as infections that are neither present nor incubating at the time of a patient's admission but are acquired during the course of healthcare delivery, whether in acute care hospitals, long-term care facilities, ambulatory clinics, or even following discharge. These infections may also include occupationally acquired diseases among

healthcare professionals, reflecting the bidirectional risk of pathogen transmission in clinical environments [1]. The development of HAIs is typically the result of the introduction of microorganisms—bacteria, viruses, fungi, or, less commonly, parasites—into a susceptible host, facilitated by factors such as invasive procedures, surgical interventions, indwelling medical devices, prosthetic implants, and compromised immune defenses. The precise etiology depends on the site of infection and the causative organism, with common examples including bloodstream infections,

urinary tract infections, surgical site infections, and ventilator-associated pneumonia [2]. HAIs are now recognized as the most frequent adverse events associated with healthcare delivery, profoundly affecting patient safety, clinical outcomes, and the reputation and efficiency of healthcare systems. They contribute significantly to morbidity and mortality and impose substantial economic costs on patients, their families, and institutions. In addition, the growing multidrug-resistant prevalence organisms (MDROs)—such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenemresistant Enterobacteriaceae, and vancomycinresistant Enterococci-has further complicated prevention and treatment efforts, rendering standard antimicrobial regimens less effective and prolonging hospital stays [3]. The global burden of HAIs remains difficult to quantify precisely, but available data suggest that approximately 3.2% of hospitalized patients in the United States and 6.5% in the European Union/European Economic Area acquire at least one infection during their hospital stay, with rates likely higher in low- and middle-income countries due to limited surveillance and fewer infection control resources [1][2][3].

The ramifications of these infections extend beyond direct patient morbidity. HAIs can delay recovery, increase the risk of long-term disability, and contribute to rising antimicrobial resistance, which collectively impose a major financial and operational burden on health systems. Healthcare administrators face mounting pressure to allocate resources efficiently toward infection prevention and control programs, while pharmacists and nursing staff are integral to these efforts through antimicrobial stewardship, adherence to aseptic techniques, and surveillance of infection trends. In response, international health organizations, including the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC), have emphasized the establishment of structured infection prevention and control (IPC) programs in all healthcare settings. These programs aim to standardize practices such as hand hygiene, environmental disinfection, isolation precautions, and surveillancedriven interventions to minimize infection risk [4]. Ultimately, the successful management of HAIs requires a coordinated interdisciplinary approach involving pharmacists, healthcare administrators, and nursing professionals. Pharmacists contribute through the rational selection and stewardship antimicrobials: nursing professionals adherence to aseptic protocols and early detection of infection signs; and administrators are responsible for implementing evidence-based policies and ensuring adequate staffing and resources. Together, these roles form the cornerstone of a sustainable strategy to reduce the incidence, severity, and economic impact of HAIs across all healthcare environments [4].

Figure-1: Transmission of Nosocomial Infections. **Etiology**

etiology of healthcare-associated infections (HAIs) is inherently multifactorial, arising from a complex interplay between pathogenic host susceptibility, and microorganisms, healthcare environment. These infections develop when pathogens breach natural host defenses through direct inoculation, colonization of medical devices, or contamination of mucosal and cutaneous surfaces. The sources of infection can be endogenous, such as the patient's own microbial flora translocating into normally sterile body sites, or exogenous, involving contaminated instruments, environmental surfaces, water systems, or direct transmission from healthcare personnel [1]. The pathogenesis is further influenced by multiple iatrogenic factors, including the use of procedures, indwelling invasive endotracheal intubation, surgical interventions, and the administration of broad-spectrum antimicrobials that disrupt normal flora and select for resistant organisms. The United States Centers for Disease Control and Prevention (CDC) categorizes HAIs into several major types based on the site of infection and the medical devices or procedures associated with their occurrence. The primary categories include line-associated bloodstream infections (CLABSIs), catheter-associated urinary infections (CAUTIs), surgical site infections (SSIs), and ventilator-associated pneumonia (VAP). Each of these conditions has distinct epidemiological patterns and preventive considerations. For example, CLABSIs often arise from the colonization of intravascular catheters by skin flora such as Staphylococcus aureus, Staphylococcus epidermidis, or gram-negative bacilli, which subsequently seed the bloodstream. Similarly, CAUTIS result ascending from bacterial contamination along the catheter surface, commonly involving Escherichia coli, Klebsiella, Pseudomonas, and Enterococcus species. SSIs typically occur when bacteria—most frequently S. aureus or Streptococcus species-enter surgical wounds either during the procedure or in the early postoperative period, while

VAP is usually caused by aspiration of oropharyngeal secretions containing *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, or *Klebsiella pneumoniae* into the lower respiratory tract [2][5].

Beyond these major categories, HAIs encompass a wide range of additional infections. These include non-ventilator-associated hospitalacquired pneumonia, gastrointestinal infectionsmost notably Clostridioides difficile-associated diarrhea and colitis—as well as primary bloodstream infections not linked to central lines and urinary tract infections unrelated to catheter use. Moreover, HAIs can be classified by organ system involvement, such as infections of the ear, eye, nose, and throat; lower respiratory tract (e.g., bronchitis. bronchiolitis, or empyema without pneumonia); skin and soft tissue (including cellulitis and surgical wound infections); cardiovascular system (such as infective endocarditis or postoperative mediastinitis); bones and joints (osteomyelitis, prosthetic joint infections); central nervous system (meningitis, ventriculitis); and reproductive tract infections, including postpartum or post-abortion sepsis. The diversity of affected systems underscores the systemic nature of HAIs and the wide array of potential transmission routes within healthcare environments [1][6]. Epidemiological surveillance over the past decade has revealed important trends in the distribution and prevalence of HAIs. A landmark 2015 point-prevalence survey conducted in U.S. acute care hospitals identified pneumonia as the most common HAI, followed by gastrointestinal infections, surgical site infections (SSIs), other systemic infections, bloodstream infections, and urinary tract infections (UTIs) [1]. This represented a notable shift from 2011 surveillance data, in which pneumonia and SSIs each accounted for approximately 21.8% of all HAIs, followed by gastrointestinal infections (17.1%), UTIs (12.9%), and bloodstream infections (9.9%) [1][5]. Importantly, the 2015 data also emphasized the growing significance of non-ventilator-associated hospital-acquired pneumonia (NV-HAP) as the leading cause of HAI in acute care settings—a pattern mirrored in European surveillance studies, which likewise reported NV-HAP as the most prevalent infection type across hospitalized populations [2][6]. The increasing prominence of NV-HAP reflects evolving healthcare practices, including reduced durations of mechanical ventilation, improved surgical prophylaxis, and greater reliance on noninvasive respiratory support modalities. However, this shift also highlights persistent vulnerabilities in patient care—particularly among individuals with chronic disease, prolonged immobility, or impaired swallowing reflexes. Likewise, C. difficile remains a dominant cause of gastrointestinal HAIs, often precipitated inappropriate or prolonged antibiotic use, which disrupts gut microbiota balance and facilitates colonization by toxin-producing strains.

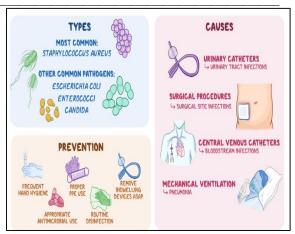


Figure-2: Nosocomial Infections.

addition to pathogen-related procedural factors, host susceptibility plays a pivotal role in HAI etiology. Populations at greatest risk include neonates, elderly patients, immunocompromised, and individuals with comorbid conditions such as diabetes, malignancy, or chronic organ failure. The healthcare environment itself serves as an amplifying reservoir—airborne and surface contamination, insufficient hand hygiene, inadequate sterilization practices, and poor adherence to isolation precautions all contribute to cross-transmission events [1][2][6]. In summary, the etiology of HAIs reflects a dynamic interaction among microorganisms, vulnerable hosts, and complex clinical environments. While advances in infection control have reduced the incidence of some device-associated infections, emerging pathogens, antimicrobial resistance, and procedural complexity continue to sustain the global burden of HAIs. Understanding these etiological determinants remains essential for developing targeted prevention strategies, strengthening surveillance systems, and refining multidisciplinary infection control protocols across healthcare settings [5][6].

Causative Organisms

Healthcare-associated infections (HAIs) arise from a diverse range of microorganisms, with bacteria being the predominant causative agents, followed by fungi and viruses. The specific pathogens responsible for HAIs vary significantly according to the healthcare setting, patient population, geographical region, and type of medical intervention. The interplay between microbial virulence factors, host immune status, and contamination determines environmental likelihood of infection. While some pathogens originate from the patient's endogenous flora, others are acquired exogenously through contaminated hands of healthcare workers, medical devices, or the hospital environment.

Bacteria

Bacterial pathogens account for the majority of HAIs and can be broadly categorized into grampositive and gram-negative organisms. Many of these bacteria are part of the normal human microbiota,

becoming pathogenic when host defenses are compromised procedures, by invasive immunosuppression, or prolonged hospitalization. Common gram-positive organisms include coagulase-negative Staphylococcus aureus, Staphylococci, Streptococcus species, Enterococcus species such as E. faecalis and E. faecium. These bacteria are major contributors to bloodstream infections, surgical site infections, and device-related infections. Among all reported HAI pathogens, Clostridioides difficile stands out as the most frequently identified organism, accounting for approximately 15% of HAIs with a known pathogen [1][5]. It causes severe antibiotic-associated diarrhea and colitis, often linked to broad-spectrum antibiotic overuse and disruption of gut microbiota balance. Gram-negative bacteria are equally significant and, in many settings, surpass gram-positive organisms in prevalence due to their adaptability and multidrug Members resistance mechanisms. of the Enterobacteriaceae family—including Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Proteus mirabilis, and Enterobacter species-are frequently implicated in urinary tract infections, ventilator-associated pneumonia, and surgical site infections. Non-fermenting gram-negative bacilli, such as Pseudomonas aeruginosa, Burkholderia and Acinetobacter baumannii, cepacia, particularly problematic in intensive care units (ICUs). where immunocompromised or ventilated patients are at highest risk. A. baumannii is associated with high mortality in ICU populations, primarily due to its extensive resistance to multiple antibiotic classes, carbapenems and aminoglycosides including [7][8][9]. Multidrug-resistant (MDR) bacteria are among the most formidable challenges in modern healthcare. These organisms not only prolong hospital stays but also significantly increase morbidity and mortality rates. Studies have shown approximately 20% of all reported bacterial isolates from HAIs exhibit multidrug resistance [10]. Notorious MDR pathogens include methicillinresistant Staphylococcus aureus (MRSA), vancomycin-intermediate and vancomycin-resistant S. aureus, extended-spectrum beta-lactamase (ESBL)producing Enterobacteriaceae, vancomycin-resistant Enterococcus (VRE). carbapenem-resistant Enterobacteriaceae (CRE), and multidrug-resistant P. aeruginosa. The emergence and global dissemination of these resistant strains have forced healthcare systems to rely on combination therapies, implement antimicrobial stewardship programs, and enhance infection prevention protocols [9][10].

Fungi

Fungal infections constitute a smaller but clinically significant subset of HAIs, particularly among immunocompromised patients, individuals on long-term antibiotic therapy, and those with indwelling medical devices such as central venous catheters, prosthetic implants, or urinary catheters.

The majority of nosocomial fungal infections are caused by Candida species, notably C. albicans, C. parapsilosis, and C. glabrata [1]. These organisms typically colonize mucosal surfaces and transition to invasive disease under favorable conditions, causing candidemia, catheter-related bloodstream infections, peritonitis. A particularly development is the emergence of Candida auris, a multidrug-resistant yeast that poses a growing global threat due to its ability to survive on environmental surfaces, resist common antifungal agents, and evade standard laboratory identification methods [11]. Outbreaks of *C. auris* have been reported in hospitals worldwide, often in critical care settings, with high rates of treatment failure and mortality. Collectively, Candida species now rank as the fourth most common pathogens associated with HAIs [12]. Other fungal agents of concern include Aspergillus fumigatus, which is acquired through airborne transmission. Infections often arise during hospital construction or renovation, when spores are dispersed into the air and inhaled by vulnerable patients. Immunocompromised hosts, particularly those undergoing chemotherapy or stem cell transplantation, are at greatest risk. Importantly, Aspergillus may also spread through contact with infected individuals or contaminated hospital ventilation systems, highlighting the need for strict environmental control and air filtration measures [13][14].

Viruses

Although viral pathogens account for only 1% to 5% of all HAIs, their potential for rapid transmission and severe outcomes makes them a notable concern [15]. Healthcare-acquired viral infections can occur through direct contact, droplet spread, or contaminated instruments, particularly in settings with inadequate infection control practices. Bloodborne viruses such as hepatitis B virus (HBV), (HCV), hepatitis virus and human immunodeficiency virus (HIV) are primarily transmitted through unsafe needle handling and reuse of syringes, practices still prevalent in some resourcelimited healthcare systems. Globally, an estimated 5.4% of all HIV infections are attributed to healthcareassociated transmission [16]. Other notable viral pathogens implicated in HAIs include rhinovirus, cytomegalovirus (CMV), herpes simplex virus (HSV), rotavirus, and influenza virus. These infections often spread via respiratory droplets, contaminated surfaces, or fecal-oral routes, and can lead to outbreaks within hospitals, particularly in pediatric and geriatric wards. Influenza outbreaks among hospitalized patients and healthcare workers are especially concerning due to high transmission rates and potential complications in high-risk populations. In conclusion, the causative organisms of HAIs represent a diverse and evolving microbial landscape, dominated by bacteria but significantly influenced by opportunistic fungi and transmissible viruses. The growing prevalence of multidrug resistance and emerging pathogens such as

C. auris necessitates vigilant surveillance, antimicrobial stewardship, and strict adherence to infection control protocols to safeguard both patients and healthcare personnel from preventable nosocomial infections [7][8][9][11][15][16].

Epidemiology

Healthcare-associated infections (HAIs) remain among the most critical challenges facing global healthcare systems, contributing substantially to morbidity, mortality, and economic burden. Despite significant advances in infection prevention and control, these infections persist in both high-income and low- to middle-income countries, albeit with wide variability in prevalence depending on healthcare infrastructure, surveillance rigor, and infection control practices. The true global burden of HAIs is difficult to determine due to inconsistent definitions, limited surveillance capacity, and underreporting in many regions, especially in resource-limited settings. However, available epidemiological data from the United States (US) and Europe provide important insight into prevalence trends, infection types, and high-risk populations, serving as proxies for global estimates [1][2]. In Europe, HAI prevalence varies significantly across different levels of care. Surveillance data show that primary care hospitals have an average prevalence of 4.4%, tertiary hospitals report 7.1%, and intensive care units (ICUs) show much higher rates of approximately 19.2%, reflecting the increased use of invasive devices and procedures in critically ill patients. Long-term care facilities have comparatively lower rates at 3.7%, though the cumulative burden remains high due to prolonged patient stays [2]. Across the European Union (EU), an estimated 8.9 million episodes of HAI occur annually in acute and long-term healthcare facilities, underscoring the magnitude of the problem at a continental level. Earlier multicenter research, such as the 1995 European Prevalence of Infection in Intensive Care (EPIC) study, reported an ICUacquired infection prevalence of 20.6%, highlighting that ICUs consistently represent focal points for infection transmission due to patient vulnerability, high device utilization, and frequent antimicrobial exposure [17]. The United States demonstrates similar trends but has achieved a gradual decline in HAI prevalence over recent decades through systematic infection control programs, improved surveillance, and enhanced antimicrobial stewardship. According to national surveillance data, the prevalence of HAIs among hospitalized patients decreased from 4.0% in 2011 to 3.2% in 2015 [1]. The same study revealed that 36.4% of infections occurred in critical care units, 57.5% in general wards or nurseries, and 6.1% in specialty, step-down, or mixed-acuity Interestingly, earlier analyses found that HAI rates were highest among adult and pediatric patients outside the ICU, followed by those in ICUs, high-risk neonatal nurseries, and well-baby nurseries, suggesting that the distribution of risk is more nuanced than previously assumed [18].

The 2015 U.S. data estimated 687,200 HAI episodes affecting 633,300 patients, marking a substantial reduction compared with the 1.7 million infections estimated in 2002 [1][18]. These improvements are attributed to the widespread adoption of evidence-based guidelines, targeted initiatives such as the National Healthcare Safety Network (NHSN) surveillance system, mandatory reporting, and hospital accreditation programs emphasizing infection prevention. Nonetheless, despite this encouraging decline, HAIs continue to represent a leading cause of preventable harm in hospitalized patients, particularly in populations with chronic illness, immunosuppression, or prolonged hospital stays. In stark contrast, the endemic burden of HAIs is markedly higher in developing and transitional countries, where healthcare systems often face resource constraints, overcrowding, inadequate sanitation, and limited access to infection control supplies. A pooled meta-analysis estimated the average prevalence of HAIs in developing countries at 15.5%, with ventilator-associated pneumonia (VAP) and neonatal infections in ICUs accounting for the majority of cases [3]. The high rates of deviceassociated infections in these regions reflect limited adherence to aseptic protocols and insufficient staffto-patient ratios. Neonatal and pediatric units are particularly vulnerable due to immature immune systems and high dependency on invasive devices. Regional studies further illuminate these disparities. A systematic review conducted in Southeast Asia identified an overall HAI prevalence of 9.1%, with significant heterogeneity across countries depending on surveillance methodologies, patient demographics, and infection control measures [19]. Similarly, reports from Africa and Latin America demonstrate consistently higher HAI rates than those observed in Europe and North America, particularly in surgical wards and intensive care settings, where infection control infrastructure is often underdeveloped. In some low-resource ICUs, VAP rates have been reported to be up to five times higher than those in developed nations, underscoring persistent global inequities.

Beyond prevalence, HAIs impose substantial clinical and economic consequences. They prolong hospital stays, increase antibiotic use, and drive antimicrobial resistance, resulting in higher mortality and healthcare costs. Globally, HAIs are estimated to contribute to millions of additional hospital days and billions of dollars in preventable expenditures annually. Moreover, in the wake of global antimicrobial resistance (AMR), HAIs now serve as both a cause and a consequence of the AMR crisis, creating a reinforcing cycle that challenges even advanced healthcare systems [17][19]. In summary, HAIs represent a global health burden of epidemic

proportions, varying by region, care setting, and patient vulnerability. While countries like the US and those in the EU have achieved measurable progress through surveillance and preventive interventions, the prevalence remains alarmingly high in developing nations, where resource limitations and infrastructural gaps hinder effective infection control. Strengthening global HAI surveillance networks, improving healthcare worker training, and investing in infection prevention infrastructure are critical steps toward reducing morbidity, mortality, and economic losses associated with HAIs worldwide [1][2][3][17][19].

Pathophysiology

The pathophysiology of healthcareassociated infections (HAIs) is governed by the intricate interplay between microbial exposure, impaired host defenses, and invasive medical interventions. In a healthy individual, physical barriers such as intact skin and mucous membranes, along with immune surveillance mechanisms, serve as primary defenses against microbial invasion. However, in hospitalized or immunocompromised patients, these defenses are frequently compromised—either through illness, therapeutic interventions, or invasive procedures-allowing opportunistic pathogens to colonize and infect previously sterile tissues and devices. Medical instruments such as urinary catheters, endotracheal tubes, central venous catheters (CVCs), and surgical implants breach these protective creating direct access routes microorganisms and facilitating biofilm formation. These biofilms, composed of microbial communities encased in extracellular polymeric substances, confer protection against host immune responses and antimicrobial agents, rendering infections difficult to eradicate [20][22]. In HAIs, pathogens may initiate infection through several mechanisms. Device-related infections often begin with bacterial adhesion to the device surface, followed by biofilm maturation and eventual dispersal of planktonic cells that disseminate systemically. Endogenous infections, on the other hand, arise when commensal flora translocate into sterile compartments, whereas exogenous infections result from contact with contaminated healthcare equipment, surfaces, or personnel. The ensuing immune response, shaped by host vulnerability and pathogen virulence, can range from localized inflammation to systemic sepsis. Ultimately, the balance between microbial aggression and host resilience determines whether colonization progresses to infection and clinical disease.

Routes of Transmission

The transmission of pathogens in healthcare environments occurs through multiple routes, with contact transmission being the most prevalent. This mode includes both direct contact, such as person-toperson transfer between healthcare workers and patients, and indirect contact, involving contaminated surfaces or medical equipment. Organisms commonly spread through contact include methicillin-resistant

Staphylococcus aureus (MRSA), extended-spectrum gram-negative β-lactamase (ESBL)-producing bacteria, vancomycin-resistant Enterococcus (VRE), Clostridioides difficile, and rotavirus. pathogens persist on hands and environmental surfaces, making strict hand hygiene and disinfection practices vital [20]. Droplet transmission involves larger respiratory droplets (>5 microns) that travel short distances, typically less than three feet, before settling. Such transmission occurs during coughing, sneezing, or close contact, and is characteristic of pathogens such as the influenza virus, Bordetella pertussis, and Neisseria meningitidis. Conversely, airborne transmission involves smaller droplet nuclei (<5 microns) that remain suspended in air and travel greater distances. Pathogens transmitted through this route include Mycobacterium tuberculosis, varicellazoster virus, measles virus, and the SARS-CoV-2 coronavirus responsible for COVID-19 [20]. Airborne pathogens pose unique infection control challenges, requiring specialized ventilation systems and isolation precautions to prevent spread.

Central Line-Associated Bloodstream Infections (CLABSI)

Among the various HAIs, central lineassociated bloodstream infections (CLABSIs) are both common and highly preventable. They occur in patients with central venous catheters (CVCs) and represent one of the most significant sources of nosocomial morbidity. In the United States. approximately 55% of intensive care unit (ICU) patients and 24% of non-ICU patients have a central line in place, underscoring the scale of potential risk [21]. The pathogenesis of CLABSI typically involves migration of skin flora along the catheter's external surface into the bloodstream, although contamination may also occur during catheter insertion, maintenance, or through hematogenous seeding from a distant infection. The biofilm-forming capacity of many pathogens further enhances adherence and persistence on catheter surfaces, providing a protective niche that resists both immune clearance and antimicrobial therapy [22]. Epidemiological data from recent U.S. studies have identified a consistent pattern of causative organisms. The most commonly isolated pathogens include Staphylococcus aureus (23%), Candida species (13%), coagulase-negative Staphylococci (12%), Enterococcus species (12%), Streptococcus species (12%), Escherichia coli (8%), and Bacteroides species (6%) [1][12][23]. However, other studies continue to report coagulase-negative staphylococci as the predominant pathogens, particularly in long-term catheterization scenarios [1][23]. Notably, antimicrobial resistance among these organisms remains a pressing concern, complicating treatment and driving the need for meticulous infection prevention strategies [9].

The risk factors for CLABSI are broadly divided into host-related and catheter-related categories. Host factors include immunosuppression

(due to malignancy, corticosteroid therapy, neutropenia), malnutrition, extremes of age, parenteral nutrition, and history of bone marrow transplantation. These conditions compromise immune surveillance, increasing susceptibility to bloodstream invasion. Catheter-related factors encompass prolonged hospitalization prior to catheter placement, extended catheter dwell time, use of multilumen catheters, suboptimal insertion technique, and breaches in aseptic protocols. Moreover, repeated catheter insertions and manipulations heighten the likelihood The contamination. anatomical site catheterization may also influence infection riskalthough femoral lines have been historically associated with higher infection rates due to their proximity to the groin and higher bacterial load, the evidence remains mixed when compared to subclavian or internal jugular placements [23]. In summary, the pathophysiology of HAIs reflects the confluence of microbial virulence, host susceptibility, procedural risks. Contact, droplet, and airborne routes drive pathogen transmission across healthcare environments, while invasive devices such as catheters and ventilators create direct portals of entry into sterile compartments. Central line-associated bloodstream infections exemplify the preventable yet persistent nature of HAIs, illustrating how lapses in aseptic technique, prolonged device use, and biofilm formation sustain infection risk. Effective control requires an interdisciplinary approach integrating infection prevention practices, device management protocols, and antimicrobial stewardship, aimed at interrupting these pathogenic mechanisms and reducing the global burden of **HAIs** [9][20][21][22][23].

Catheter-Associated Urinary Tract Infections (CAUTI)

Catheter-associated urinary tract infections (CAUTIs) are among the most common healthcareassociated infections (HAIs) worldwide, occurring in patients with indwelling urinary catheters inserted for diagnostic, therapeutic, or postoperative management purposes. It is estimated that 15% to 25% of hospitalized patients in the United States receive a urinary catheter during their stay, placing them at risk for developing CAUTI [1]. These infections represent a significant source of morbidity, increased hospitalization costs, and prolonged length of stay, and they contribute to the growing problem of antimicrobial resistance. CAUTIs are broadly classified into two types based on their route of infection: extraluminal and intraluminal. Extraluminal infections occur when bacteria migrate along the outer surface of the catheter from the urethral meatus into the bladder, typically during insertion or as a result of poor perineal hygiene. Conversely, intraluminal infections arise when pathogens ascend through the inner lumen of the catheter, usually due to breaks in the closed drainage system or retrograde flow of contaminated urine. In both cases, biofilm formation plays a pivotal role in pathogenesis. Bacteria and fungi adhere to catheter surfaces and produce extracellular polymeric substances, creating a protective biofilm that facilitates microbial colonization, persistence, and resistance to antibiotics and host immune responses [2][12]. The pathogens most commonly implicated in CAUTI are derived from fecal and skin flora. Escherichia coli remains the predominant organism, followed by Klebsiella pneumoniae and Klebsiella Enterococcus species, Pseudomonas oxytoca, aeruginosa, and Candida species [1][2][12]. The frequent involvement of Candida reflects the rise of fungal CAUTIS, particularly immunocompromised individuals and those receiving prolonged antibiotic therapy. These organisms exhibit diverse virulence factors—such as fimbriae, adhesins, and biofilm-forming capacity—that enable persistence in the urinary tract and on catheter surfaces.

Complications of CAUTI can be severe, ranging from ascending infection involving the ureters and kidneys (pyelonephritis) to bacteremia and sepsis, particularly in patients with prolonged catheterization or underlying comorbidities. The risk of systemic dissemination is heightened in elderly or critically ill individuals, where infection-related mortality may exceed 10%. The duration of catheterization is the single most important risk factor for CAUTI, with infection risk increasing by approximately 3-7% per day of catheter use. Other modifiable factors include breaches in aseptic technique during insertion or maintenance, contaminated drainage systems, and improper hand hygiene practices among healthcare providers. Patient-related factors also contribute to susceptibility—these include female sex, older age, paraplegia, diabetes mellitus, cerebrovascular disease, recent urinary tract infection, and antibiotic use within the previous 90 days [24][25]. The female urethra's shorter length and proximity to the anus contribute to higher infection rates among women. Effective prevention strategies emphasize strict adherence to aseptic technique, limiting catheter use to essential cases, and early catheter removal as soon as clinically feasible. Maintenance protocols, including regular perineal hygiene, the use of closed drainage systems, and avoiding unnecessary disconnections, play a critical role in reducing infection risk.

Surgical Site Infections (SSI)

Surgical site infections (SSIs) represent another major subset of HAIs, occurring in approximately 2% to 5% of patients undergoing surgical procedures. SSIs typically manifest within 30 days postoperatively, or within 90 days when an implant or prosthetic device is involved [26]. They are classified according to depth and location into superficial incisional, deep incisional, and organ-space infections. The source of infection is often endogenous flora from the patient's own skin, gastrointestinal, or genital tract, although exogenous contamination from

the surgical environment can also occur. Several procedure-related factors influence SSI risk. The most critical determinant is operative duration—the longer the surgical time, the greater the likelihood of microbial contamination [27]. Other contributors classification include wound (clean, contaminated, contaminated, or dirty), intraoperative hypothermia, hypovolemia, hypoxemia, emergency procedures, multiple surgeries, blood transfusions, and the type of prosthetic material used. Dirty or contaminated wounds carry significantly higher infection risks compared to clean wounds [28]. Postoperative factors, including the presence of wound drains, poor wound hygiene, and extended hospitalization, further elevate the likelihood of infection [29]. Patient-specific risk factors such as immunosuppression, tobacco hyperglycemia, malnutrition, rheumatologic disease, and advanced age compound the risk [27][29]. Among these, hyperglycemia and poor nutritional status are particularly significant, as both impair leukocyte function and tissue healing. Microbiologically, SSIs are caused by a range of pathogens, including Staphylococcus coagulase-negative aureus, Staphylococci, Escherichia coli, Klebsiella, Enterobacter, Enterococcus, and Streptococcus species [1][27]. S. aureus—including methicillinresistant strains (MRSA)—remains one of the most frequently isolated organisms, particularly in orthopedic, cardiac, and vascular surgeries. While endogenous flora are the predominant sources, exogenous transmission from contaminated surgical instruments, airborne particulates, or surgical personnel can also occur, though these account for a minority of cases and often present as outbreak clusters. Prevention strategies for SSI focus on preoperative optimization, including skin antisepsis, antibiotic prophylaxis, and glycemic control; intraoperative measures such as maintaining normothermia, sterile technique, and minimizing operative time; and postoperative wound care protocols that reduce contamination risk. Collectively, these interventions form a comprehensive approach to reducing SSI incidence and improving surgical outcomes [26][27][28][29].

Pneumonia

Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) represent two of the most severe and life-threatening forms of healthcare-associated infections (HAIs). HAP is defined as pneumonia that develops 48 hours or more after hospital admission, whereas VAP arises more than 48 hours after endotracheal intubation and initiation of mechanical ventilation. Both conditions contribute significantly to morbidity, mortality, and healthcare costs, particularly in critically ill and immunocompromised patients. Epidemiologic studies estimate that VAP affects approximately 5% to 15% of mechanically ventilated individuals, underscoring its clinical importance in intensive care units (ICUs)

[30]. The pathophysiology of HAP and VAP involves the colonization of the oropharynx and upper respiratory tract by potentially pathogenic microorganisms. These pathogens can then gain access to the lower respiratory tract through microaspiration, inhalation of contaminated aerosols, hematogenous dissemination, translocation from the gastrointestinal Mechanical ventilation further increases the risk by bypassing natural airway defenses, impairing mucociliary clearance, and facilitating the formation of biofilms on endotracheal tubes that serve as reservoirs for bacterial growth. Aspiration of contaminated secretions remains the most frequent mechanism of infection in both HAP and VAP. Common causative pathogens include Staphylococcus aureus (both methicillin-sensitive and methicillinresistant strains), Pseudomonas aeruginosa, Candida species, Klebsiella pneumoniae and Klebsiella oxytoca, Streptococcus species, and Enterobacter species. In ICUs, the prevalence of multidrug-resistant organisms (MDROs)—including extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter Pseudomonas, and methicillin-resistant S. aureus (MRSA)—poses significant therapeutic challenges [31]. These organisms often develop through prolonged antibiotic exposure, environmental contamination. and cross-transmission healthcare personnel or contaminated medical devices.

Host susceptibility to HAP and VAP depends on a combination of local and systemic factors. Local factors include chronic lung disease, impaired mucociliary clearance, and the presence of airway foreign bodies. Systemic factors encompass immunosuppression, neutropenia, advanced age (over 70 years), malnutrition, dysphagia, and recent abdominal or thoracic surgery, all of which reduce the body's ability to clear pathogens effectively [31]. Several risk factors are strongly associated with the development of VAP. These include mechanical ventilation, sedation, supine positioning, inadequate oral hygiene, reintubation, and prolonged ICU stay [30][32]. Sedation impairs the cough reflex and suppresses diaphragmatic movement, promoting secretion stasis. Similarly, supine positioning facilitates gastric aspiration, while prolonged ventilation allows for extensive colonization of endotracheal tubes. Risk factors for acquiring HAP or VAP with multidrug-resistant organisms include prior intravenous antibiotic use within the previous 90 days, septic shock at the onset of VAP, preceding acute respiratory distress syndrome (ARDS), hospitalization lasting more than five days before infection onset, and the requirement for acute renal replacement therapy [33]. Patients with these risk factors should receive empiric broad-spectrum antimicrobial therapy, later de-escalated based on culture results. Preventive measures for HAP and VAP center on minimizing ventilator duration and optimizing infection control

practices. Evidence-based interventions—collectively known as the ventilator care bundle—include elevating the head of the bed (30–45°), daily sedation interruptions, early mobilization, regular oral care with antiseptic agents, and subglottic secretion drainage. These strategies reduce microaspiration, improve lung aeration, and decrease infection risk. Furthermore, adherence to antimicrobial stewardship programs helps curb resistance by ensuring judicious antibiotic use.

Clostridioides difficile Infection

Clostridioides difficile (C. difficile) infection (CDI) remains the most frequently identified single pathogen responsible for healthcare-associated infections globally [1][5]. This gram-positive, sporeforming anaerobe causes disease ranging from mild antibiotic-associated diarrhea pseudomembranous colitis, toxic megacolon, and sepsis. Its spores are highly resistant to environmental cleaning agents and can survive for months on hospital surfaces, leading to extensive transmission within healthcare facilities. Transmission occurs primarily through the fecal-oral route, often via contaminated hands, equipment, or environmental surfaces. Aerosolization of spores during bed-making or patient care may further contribute to environmental contamination and spread [34]. Once ingested, spores germinate in the intestines, where disruption of the normal gut microbiota—usually due to antibiotic therapy—allows *C. difficile* to proliferate and release potent toxins A and B, causing mucosal inflammation, epithelial damage, and increased intestinal permeability. The most critical risk factors for CDI are recent antibiotic exposure and environmental contamination, both of which are modifiable through appropriate stewardship and infection control. Antibiotics such as fluoroquinolones, cephalosporins, clindamycin, and broad-spectrum penicillins are particularly implicated in disrupting gut flora balance. Other risk factors include advanced hospitalization, multiple comorbidities, use of gastric acid-suppressing medications (such as proton pump inhibitors), and immunosuppression [35]. Elderly and debilitated patients are at the highest risk for recurrent or severe infection due to impaired immune response and slower gut microbiome recovery. Prevention and control rely on a multifaceted approach. Key measures include hand hygiene with soap and water (as alcoholbased sanitizers do not eliminate spores), isolation of infected patients, use of contact precautions, and environmental cleaning with sporicidal agents. Antibiotic stewardship remains central to reducing CDI incidence, while probiotics and fecal microbiota transplantation are emerging adjunctive therapies for recurrent cases. In summary, HAP, VAP, and CDI are leading causes of healthcare-associated infections with profound implications for patient safety and healthcare resource utilization. Their pathogenesis involves a convergence of host vulnerability, microbial virulence, and hospital environmental factors. A rigorous combination of infection prevention, early detection, and judicious antimicrobial management remains essential to reducing their burden in modern healthcare settings [30][31][33][34][35].

History and Physical

A meticulous history and targeted physical examination are central to recognizing and differentiating healthcare-associated infections (HAIs), whose manifestations span from subtle, localized findings to fulminant sepsis. The clinical interview should anchor symptom onset to healthcare exposures, clarifying whether signs began more than 48 hours after admission (HAP) or intubation (VAP), during or soon after device placement (CLABSI, CAUTI), or within postoperative windows (SSI). In all cases, establish the baseline functional status, recent antimicrobial use. immunosuppression, colonization with multidrug-resistant organisms, and the presence, duration, and indications for invasive devices. Because atypical or blunted febrile responses older, malnourished, common in immunocompromised patients, the absence of fever cannot exclude an HAI; elicit constitutional symptoms such as malaise, decreased oral intake, delirium, or new oxygen requirements that may be more sensitive harbingers of infection in these groups. For suspected central line-associated bloodstream infection (CLABSI), the history should document line type, insertion site, catheter dwell time, manipulations, parenteral nutrition, and any breaks in sterile technique. Patients often report abrupt fevers, rigors, and malaise temporally linked to catheter use or infusion. Physical examination assesses the insertion site for erythema, tenderness, fluctuance, or purulence, and evaluates for signs of metastatic complicationsnew cardiac murmurs suggesting endocarditis, focal bone pain for osteomyelitis, joint tenderness for septic arthritis, or cord-like tender veins indicating suppurative thrombophlebitis. Importantly, catheter site may appear benign even with bacteremia; a normal local exam should not reduce clinical suspicion in a patient with compatible systemic findings and a central line in place or recently removed.

Catheter-associated urinary tract infection (CAUTI) presents with the symptom complex of a UTI in the context of an indwelling urethral or suprapubic catheter, intermittent catheterization, or within 48 hours of removal. Elicit fever, suprapubic discomfort, flank pain, urgency, new or worsening incontinence, acute hematuria, or catheter obstruction with cloudy or foul-smelling urine. Because catheterization can blunt dysuria and frequency, systemic features may predominate. The exam focuses on suprapubic and costovertebral angle tenderness while inspecting the catheter system for closed drainage integrity, dependent bag positioning, kinks, encrustation, or periurethral inflammation. In patients

with spinal cord injury or neuropathy, look for autonomic dysreflexia, increased spasticity, or vague constitutional decline as atypical presentations of infection. Surgical site infection (SSI) should be contextualized by the procedure performed, wound class, operative duration, transfusions, and prosthetic implants. Symptoms typically arise within 30 days postoperatively—or within 90 days if an implant is present—and may include localized pain, erythema, warmth, serous or purulent drainage, and wound separation. The physical examination differentiates superficial incisional infection (skin and subcutaneous tissue) from deeper involvement of fascia or muscle, and from organ/space infection. Palpate for fluctuance or crepitus, assess for disproportionate pain, and look toxicity—fever, for systemic tachycardia, hypotension, leukocytosis—that may signal deep or organ/space involvement. Examine surgical drains for output quality and volume, as turbid or feculent drainage may provide diagnostic clues. Hospitalacquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) typically present with new or worsening fever, cough, purulent sputum, dyspnea, and hypoxemia beginning more than 48 hours after admission or intubation, respectively. In sedated or mechanically ventilated patients, clinical clues include increased oxygen or ventilator requirements, rising secretion burden during suctioning, new coarse breath sounds, crackles, or bronchial breathing on auscultation, and reduced air entry over affected fields. Evaluate for pleuritic chest pain, pleural effusion (diminished breath sounds and dullness to percussion), and signs of respiratory fatigue. Correlate respiratory symptoms with aspiration risks, sedation depth, supine positioning, reintubation events, and adequacy of oral care.

Healthcare facility-onset Clostridioides difficile infection should be suspected in patients with three or more unformed stools within 24 hours after the third hospital day, especially with recent antibiotic exposure. Diarrhea is the hallmark; however, abdominal cramping, distention, fever, nausea, anorexia, and dehydration are frequent. examination, assess for diffuse abdominal tenderness, tympany from ileus, and peritoneal signs that raise concern for severe colitis or toxic megacolon. In older or immunocompromised patients, presentations may be muted; nonspecific clinical deterioration delirium, lethargy, tachycardia, hypotension, or unexplained hypoxemia—should heighten suspicion even before diarrhea is prominent. Across all suspected HAIs, vitals and hemodynamic assessment (temperature, heart rate, blood pressure, respiratory rate, oxygen saturation) are immediate priorities to identify sepsis or septic shock. A focused device survey is indispensable: confirm the ongoing need for each catheter or line, note dwell times, and scrutinize maintenance practices, securement, and dressing integrity. Perform a general examination for alternative infection sources-oral cavity and dentition, sinuses, skin folds, pressure injuries, intravenous sites, and perineum—and evaluate for volume status and end-organ perfusion. In neurologically impaired patients, subtle changes such as new agitation, somnolence, or decline in rehabilitation participation may be early indicators of infection. Finally, document antimicrobial exposures, allergies, and prior microbiology, including known colonization with multidrug-resistant organisms, as these data shape pretest probability, empiric therapy, and isolation precautions. A systematic, exposure-anchored history and thorough, device-aware physical lay the groundwork for timely diagnosis, source control, and targeted treatment across the spectrum of HAIs.

Evaluation

Accurate diagnosis of healthcare-associated infections (HAIs) requires a structured approach presentation, clinical integrating physical examination, and laboratory and imaging studies. Early and precise identification of the causative pathogen is crucial for guiding antimicrobial therapy and preventing complications. While the diagnostic modalities differ depending on the type of infection, the overarching goal is to confirm infection, identify the source, and assess for systemic involvement. Baseline laboratory tests such as a complete blood count (CBC), basic metabolic panel, liver function tests, inflammatory markers (C-reactive protein, procalcitonin, erythrocyte sedimentation rate), and arterial blood gases provide valuable insight into the degree of inflammation, sepsis, and organ dysfunction. In addition, blood cultures remain the cornerstone for identifying bacteremia associated with indwelling medical devices.

Central Line-Associated Bloodstream Infection (CLABSI)

When CLABSI is suspected and no other infection source is apparent, paired blood cultures should be obtained before initiating empirical antibiotics. Cultures should be drawn from both the central venous catheter and a peripheral vein to allow comparison of time-to-positivity between samples. A differential time to positivity (DTP) of ≥2 hours earlier in the central line sample supports a diagnosis of CLABSI. If purulent discharge is present at the catheter insertion site, it should be collected for Gram stain and culture to identify the organism and its antibiotic sensitivity profile. Removal of the catheter may be indicated if severe sepsis, persistent bacteremia, or infection with certain pathogens (e.g., S. aureus, Candida species, or multidrug-resistant organisms) is suspected.

Nosocomial infections	Clinical features	Laboratory features
UTI	Fever Lower abdominal pain change in urine characteristics	Leukocytosis Positive urine culture 5 (10 CFU of a single organism per ml of urine)
Pneumonia	Fever Pleuritic chest pain Decreased intensity of breath sounds Presence or increase in rales	Leukocytosis Sputum for gram stain Positive sputum culture Positive chest X-ray
Blood infections	Unexplained fever with chills and rigor pain, tenderness or purulent drainage at the site of insertion of IV access or CVP catheter	Leukocytosis Positive blood culture Positive CVP catheter culture (after catheter removal)
Skin and soft tissue infections	Pain, swelling, tenderness or inflammation and warmth of skin Purulent drainage from skin Fever	Smear for gram stain Positive swab culture Leukocytosis
Gastroenteritis	Increased frequency of stools Change in consistency of stools Fever Dehydration	Leukocytosis Positive stool culture
Meningitis	Fever Altered sensorium Headache Neck stiffness Vomiting	Leukocytosis CSF-cell count, cell type, culture, sugar, protein

Figure-3: Diagnostic Criteria of Nosocomial Infections.

Catheter-Associated Urinary Tract Infection (CAUTI)

For CAUTI, obtaining uncontaminated urine specimens is essential. Ideally, urine samples should be collected after catheter removal, using a midstream clean-catch technique, to avoid contamination from bacterial biofilms that form on catheter surfaces. When the catheter cannot be removed, samples should be aspirated aseptically from the sampling port after disinfection. Urinalysis and urine culture are indispensable for confirming infection. Pyuria is frequently seen but is not diagnostic by itself. A definitive diagnosis is made when the patient exhibits urinary tract infection symptoms not attributable to another source and the culture reveals ≥1000 colonyforming units (CFU)/mL of one or more uropathogens. Asymptomatic bacteriuria, defined as ≥100,000 CFU/mL in the absence of symptoms, should not be treated, as unnecessary antibiotics promote resistance.

$Surgical\ Site\ Infection\ (SSI)$

Diagnosis of SSI is primarily clinical and guided by the location and depth of infection. When infection is suspected, samples of wound exudate, aspirates, or tissue biopsies should be obtained for microbiologic culture and susceptibility testing. While superficial swabs may provide misleading results due to colonization, aspirates from deep wounds or intraoperative specimens yield more accurate cultures. Imaging modalities such as ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI) can identify abscesses, deep tissue

involvement, or organ-space infections and assist in guiding drainage or surgical intervention. Laboratory findings often reveal leukocytosis, elevated inflammatory markers, and positive cultures confirming bacterial etiology.

Hospital- and Ventilator-Associated Pneumonia (HAP/VAP)

In suspected HAP or VAP, evaluation begins with chest imaging—typically a chest X-ray or CT scan—which may reveal new or progressive infiltrates, consolidation, or air bronchograms. However, radiologic findings must be correlated with clinical features such as fever, purulent sputum, worsening oxygenation, or elevated white blood cell count. Respiratory specimens should be collected for microbiologic testing, using noninvasive methods such as endotracheal aspirates or spontaneously expectorated sputum, or invasive techniques such as bronchoscopy with bronchoalveolar lavage (BAL) or protected specimen brushing [36]. All respiratory samples should undergo Gram staining, quantitative culture, and antimicrobial susceptibility testing. For immunocompromised patients or those not responding to empiric therapy, specialized media or molecular tests may be required to identify fastidious organisms like *Mycobacterium tuberculosis* or fungal pathogens.

Clostridioides difficile Infection (CDI)

Diagnosis of C. difficile infection (CDI) is based on clinical symptoms and stool testing. CDI should be suspected in patients with ≥ 3 unformed stools within 24 hours after ≥ 3 days of hospitalization, particularly following antibiotic exposure. Only unformed stool should be tested to minimize false positives. Enzyme immunoassays (EIA) detect toxins A and B and glutamate dehydrogenase (GDH) antigen serve as initial screening tools, followed by nucleic acid amplification testing (NAAT) to confirm indeterminate results [37][38]. NAAT is highly sensitive but may detect asymptomatic carriers, potentially leading to overdiagnosis. For patients with ileus or severe disease, rectal swabs may substitute for stool specimens. In severe or complicated cases, abdominal imaging (CT scan) helps evaluate for toxic megacolon, perforation, or colonic thickening. Colonoscopy is not routinely performed but can confirm the diagnosis if pseudomembranous plaques are visualized. In summary, the evaluation of HAIs requires a patient-specific, infection-specific, and evidence-based diagnostic framework. Blood cultures, site-specific microbiology, and imaging studies form the cornerstone of diagnosis, while careful sample collection techniques and interpretation of results prevent misdiagnosis and overtreatment. Integration of clinical assessment with targeted laboratory data allows clinicians to differentiate colonization from infection, initiate timely and appropriate therapy, and reduce the morbidity associated with healthcareassociated infections [36][37][38].

Treatment / Management

Effective management of nosocomial infections hinges on three coordinated pillars: rapid source identification and control, timely pathogendirected antimicrobial therapy, and uncompromising adherence to infection prevention and antimicrobial stewardship practices. Source control includes removal, exchange, or optimization of implicated devices and drainage or debridement of infected spaces. Antimicrobial selection should be guided first by the clinical syndrome and severity, then refined by culture and susceptibility data, local antibiograms, and patient-specific pharmacokinetics, with early deescalation when feasible to curb resistance and toxicity. Close monitoring for clinical response within the first 48-72 hours is essential; failure to respond should prompt reassessment for complications, occult or alternative diagnoses. Throughout. multidisciplinary collaboration among prescribers, nursing, infection preventionists, pharmacists, and microbiology is critical to align therapy with institutional pathways and to contain transmission within the healthcare environment. For central lineassociated bloodstream infection, prompt recognition and decisive action reduce morbidity and metastatic complications. When the cultured organism and clinical context indicate, central venous catheter removal should be strongly considered. Catheters associated with candidemia, Staphylococcus aureus bacteremia, or Pseudomonas aeruginosa bacteremia should be removed and replaced at an alternate site after blood cultures document clearance to minimize the risk of persistent seeding and endovascular complications [39]. The antimicrobial regimen and total duration should reflect the specific pathogen, the presence of intravascular or end-organ complications, and immune status; complicated bacteremia warrants extended therapy with careful evaluation for endocarditis, suppurative thrombophlebitis, osteomyelitis, septic arthritis, or deep abscess. Prevention remains the cornerstone: meticulous hand hygiene, skin antisepsis with chlorhexidine, maximal sterile barrier precautions at insertion, and experienced operators reduce insertion-related contamination. Daily review of central line necessity, minimizing the number of catheters, and limiting lumens to those essential for care materially reduce risk, while standardized maintenance bundles sustain gains after placement [39].

Catheter-associated urinary tract infections demand parallel attention to antimicrobial selection and device strategy. Because biofilm undermines antibiotic penetration and promotes persistence, minimizing the use and duration of indwelling urethral catheters is the most effective preventive measure, with daily reassessment of necessity and preferential use of intermittent catheterization when clinically feasible given its lower infection risk 40. For established infection, catheter removal or exchange is recommended—particularly when dwell time exceeds two weeks—because continued use of a biofilm-laden

device is associated with treatment failure and recurrence. Empiric therapy should be guided by local resistance patterns and promptly tailored to urine culture and susceptibility results, with attention to dosing in renal dysfunction and the higher likelihood of multidrug-resistant gram-negative bacilli in recently hospitalized or antibiotic-exposed patients. Adjunctive interventions such as antiseptic-coated catheters, antimicrobial bladder irrigation, or treated collection systems remain controversial, with limited evidence of net benefit and potential to drive resistance: their routine use is not recommended outside defined indications [40]. Management of surgical site infection begins with rapid source control—opening the wound when indicated, evacuating purulence, and debriding devitalized tissue to restore perfusion and reduce microbial burden. Empiric antimicrobial coverage should reflect the operative field's typical flora-for example, grampositive cocci for clean orthopedic or cardiac procedures, and mixed aerobic-anaerobic coverage for colorectal surgery-with narrowing based on culture results and clinical trajectory, particularly in polymicrobial infections where culture may not fully capture all organisms. Prevention spans the perioperative continuum. Preoperatively, optimization of modifiable risks (smoking cessation, glycemic control, nutrition), appropriate antibiotic prophylaxis timed to incision, and decolonization when indicated reduce baseline risk. Routine hair removal is discouraged; if necessary, clipping is preferred to shaving to avoid microtrauma. Intraoperatively, maintaining normothermia above 35.5 °C, euvolemia, adequate oxygenation, and blood glucose under 180 mg/dL reduces infection risk; re-dose prophylactic antibiotics for prolonged procedures or significant blood loss. Postoperatively, attentive wound care, judicious management of drains, and, in select circumstances such as dirty wounds or immunocompromised hosts, short courses wounds or in postoperative antibiotics may be appropriate, always balanced against resistance and C. difficile risks [41].

Hospital-acquired and ventilator-associated pneumonia require prompt, judicious antibiotic initiation paired with rigorous prevention strategies. Ideally, respiratory cultures should guide therapy; when unobtainable or delayed, empiric regimens should follow institutional guidelines informed by local antibiograms [36]. In ventilator-associated pneumonia, empiric therapy typically includes coverage for Pseudomonas aeruginosa, methicillinresistant Staphylococcus aureus, and other resistant gram-negative bacilli, with consideration of dual antipseudomonal agents when patient risk factors and local resistance patterns warrant broader initial coverage (B3). For suspected aspiration events, include agents active against oral anaerobes. Once culture and susceptibility data return, de-escalate promptly to the narrowest effective regimen and target a defined course based on clinical response. Lack of improvement within 72 hours or early deterioration despite appropriate coverage should prompt evaluation for complications such as empyema, lung abscess, or alternative sources of sepsis. Prevention bundles reduce incident VAP: minimizing duration of mechanical ventilation, daily sedation interruption and assessment for extubation readiness, elevation of the head of bed, oral care with antiseptic solutions, subglottic suctioning as available, early mobilization, and careful avoidance of unplanned reintubation [36]. Clostridioides difficile infection acquired in healthcare settings is managed similarly to community-onset disease, with early attention to modifiable drivers. Discontinuation of the inciting antibiotic whenever possible is a pivotal first step. First-line pharmacotherapies include oral vancomycin and fidaxomicin, with metronidazole reserved for select mild cases or when preferred agents are unavailable. Newly approved fecal microbiota transplantation products offer effective options for recurrent disease and should be considered after standard therapies fail [42][43]. Management should follow the most current clinical guidelines, tailoring duration to severity, concomitant antibiotic needs, and recurrence risk, and involving surgical consultation and consideration of fecal microbiota-based therapies in fulminant or refractory cases with systemic toxicity or impending complications [44]. Prevention depends on early case identification, prompt isolation, strict contact precautions, environmental cleaning with sporicidal agents, and adherence to soap-and-water hand hygiene because alcohol-based rubs do not eradicate spores. Antimicrobial stewardship is central to reducing incident CDI and curbing outbreaks, especially during periods of high transmission [44].

all syndromes. Across antimicrobial stewardship provides the framework for initiating appropriate empiric coverage while minimizing unnecessary broad-spectrum exposure. Interventions include syndrome-specific order sets, prospective audit and feedback, rapid diagnostic testing with pharmacist-driven de-escalation, therapeutic drug monitoring for agents with narrow therapeutic windows, and stop dates or time-outs to reassess ongoing need. Nursing leadership is vital in implementing device maintenance bundles, reinforcing hand hygiene and isolation practices, and ensuring timely removal of unnecessary catheters and lines. Administrators support these efforts by resourcing infection prevention programs, surveillance, and education, and by aligning policies with evidence-based bundles and accountability metrics. Finally, individualized patient factors must guide management intensity. Immunocompromised hosts, patients at extremes of age, and those with renal or hepatic impairment require careful dose adjustments, broader initial coverage when indicated, and lower thresholds for imaging and procedural control. Timely communication source

microbiology results, daily reassessment of device necessity, and clear criteria for transition from intravenous to oral therapy and for hospital discharge support safe, efficient care pathways. By integrating rigorous prevention, decisive source control, targeted antimicrobials, and stewardship, healthcare teams can reduce the incidence and impact of HAIs while preserving antimicrobial effectiveness for future patients [36][39][40][41] [42][43][44].

Differential Diagnosis

The differential diagnosis of healthcareassociated infections (HAIs) is broad and varies depending on the presenting symptoms, underlying risk factors, and the type of suspected infection. Distinguishing HAIs from community-acquired infections (CAIs) is essential because management, infection control, and antimicrobial therapy differ markedly between the two. In contrast to community pathogens, HAIs often involve multidrug-resistant organisms (MDROs) such as methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter species. The timing of symptom onset—typically more than 48 hours after hospital admission or medical device placement—is the primary clue to nosocomial origin. Clinical differentiation also requires consideration of patient exposure history, including recent hospitalization, antibiotic use, surgical procedures, and the presence of invasive devices such as central venous catheters or urinary catheters.

Central Line-Associated Bloodstream Infection (CLABSI)

In patients with bloodstream infection, the presence of a central venous catheter (CVC) necessitates a thorough evaluation for CLABSI, but alternative diagnoses must also be considered. Bacteremia without a CVC should prompt investigation for other potential foci such as pneumonia, urinary tract infection (UTI), endocarditis, wound infection, or intra-abdominal abscess. Even when a CVC is present, bacteremia could result from a different primary source seeding the bloodstream. Therefore, the timing of symptom onset relative to catheter placement and removal is crucial: CLABSI should be suspected if symptoms begin while the catheter is in place or within 48 hours of its removal. Catheter site infection, septic thrombophlebitis, or hematogenous spread from a distant site can also mimic CLABSI. Diagnostic accuracy depends on blood culture comparison from both the catheter and a peripheral vein and the exclusion of other causes of

Catheter-Associated Urinary Tract Infection (CAUTI)

Differentiating CAUTI from community-acquired UTI is vital for targeted treatment and prevention of unnecessary catheter manipulation. Community-acquired UTIs occur in the absence of

recent catheterization, typically presenting as acute cystitis or pyelonephritis. By contrast, CAUTI develops in the context of recent or current catheter use, usually within 48 hours of insertion or removal. Other conditions mimicking CAUTI include urethritis, prostatitis, vaginitis, nephrolithiasis, or asymptomatic bacteriuria-the latter common in catheterized patients but not indicative of infection. Noninfectious causes such as catheter obstruction, bladder stones, or local irritation may also produce similar symptoms. The defining feature of CAUTI is the combination of compatible symptoms (e.g., fever, suprapubic tenderness, flank pain, or new-onset delirium) with a positive urine culture (>1000 CFU/mL) from a catheter specimen in the absence of another infection source.

Surgical Site Infection (SSI)

Postoperative fever and wound inflammation are frequent but nonspecific, often arising from noninfectious or alternative infectious causes. These include atelectasis, pneumonia, UTI, medication reactions, or blood transfusion-related febrile responses. Localized postoperative pain without purulent drainage may reflect seroma formation, wound dehiscence, hematoma, herniation, or cellulitis rather than true SSI. Additionally, gas gangrene, myonecrosis, neoplasms, and septic thrombophlebitis may present similarly but differ pathophysiologically. SSIs are defined by infection developing within 30 days of surgery or 90 days if prosthetic material is implanted. The diagnosis requires characteristic clinical signs (erythema, warmth, tenderness, and purulent drainage) combined with supportive findings from microbiologic cultures or imaging showing abscess or deep-space infection.

Hospital- and Ventilator-Associated Pneumonia (HAP/VAP)

In distinguishing HAP from communityacquired pneumonia (CAP), timing of onset again provides critical context-HAP develops after 48 hours of hospitalization, whereas CAP is present on or shortly after admission. The differential diagnosis for new infiltrates on chest imaging is extensive and includes chronic obstructive pulmonary disease (COPD) exacerbation, asthma, pulmonary edema, pulmonary embolism, bronchiectasis, or upper respiratory infection. In intubated patients, ventilatorassociated pneumonia (VAP) must be differentiated from aspiration pneumonitis, acute respiratory distress syndrome (ARDS), pulmonary hemorrhage, or druginduced pneumonitis. Infiltrative malignancy can also mimic pneumonia radiographically. Diagnostic confirmation of HAP or VAP requires the presence of new or progressive radiographic infiltrates plus clinical criteria such as fever, purulent sputum, leukocytosis or leukopenia, and worsening oxygenation, supported by microbiologic data from respiratory specimens.

Healthcare-Onset Clostridioides difficile Infection (CDI)

Diarrhea developing after three or more days of hospitalization should trigger evaluation for C. difficile infection (CDI), though numerous other causes must be considered. Noninfectious differentials include antibiotic-associated diarrhea not due to C. difficile, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), microscopic colitis, and malabsorptive diarrhea. Infectious alternatives include gastroenteritis (e.g., norovirus, rotavirus, adenovirus), bacterial pathogens such as Salmonella, Staphylococcus aureus. Bacteroides Clostridium perfringens, Klebsiella oxytoca, or fungal overgrowth [45]. In severe CDI, toxic megacolon may present as abdominal distension and ileus, mimicking pseudo-obstruction, ischemic colitis, or volvulus. Comprehensive stool testing for *C. difficile* toxins or genes, combined with clinical context, remains the diagnostic standard.

Other Healthcare-Associated Infections

Beyond the common syndromes, other HAIs include skin and soft tissue infections, upper respiratory tract infections, central nervous system infections, and postpartum or postoperative reproductive tract infections. Their differentiation from community-acquired counterparts relies on clinical context and healthcare exposure history. For example, nosocomial meningitis often follows neurosurgical procedures or spinal instrumentation, while postpartum endometritis typically arises after cesarean delivery or prolonged labor with membrane rupture. In summary, distinguishing HAIs from community-acquired or noninfectious conditions requires a systematic, context-driven approach that integrates timing, risk factors, and exposure history. Recognizing that HAIs are typically linked to medical prolonged hospitalization, interventions, immunosuppression allows clinicians to focus diagnostic efforts appropriately. Accurate differentiation ensures not only the delivery of targeted antimicrobial therapy but also the activation of appropriate infection control measures, thereby minimizing further transmission within healthcare settings.

Prognosis

The prognosis of healthcare-associated infections (HAIs) reflects an interplay among infection phenotype, host and illness severity, and the virulence and resistance profile of the causative pathogen. Although the true global burden remains difficult to quantify because of uneven surveillance and heterogeneous definitions, multiple cohort and surveillance studies provide a consistent picture of excess substantial mortality. prolonged hospitalization, and high costs attributable to HAIs across settings and income levels [46][47][48]. Mortality estimates vary widely with population mix and case definitions; nevertheless, a 30-day mortality around 10% is frequently reported, while crude mortality can range from 12% to 80% depending on comorbidity burden, care intensity, and the

of predominance invasive device-associated infections [46][47][48]. Critically ill patients appear to bear a disproportionate share of excess deaths even after adjustment for baseline severity, underscoring the synergy between organ failure, invasive support, and nosocomial acquisition of multidrug-resistant organisms [17][49]. Comparative international data illustrate this gradient vividly. In one large multicountry analysis, intensive care unit (ICU) mortality reached 25% in patients with an HAI versus 11% without; overall hospital mortality in the same dataset was 30% compared with 15% for those without infection, highlighting both ICU and ward vulnerability when nosocomial infection supervenes [8]. Device-specific analyses from the International Nosocomial Infection Control Consortium estimated excess ICU mortality of 29.3% for ventilatorassociated pneumonia (VAP), 23.6% for central lineassociated bloodstream infection (CLABSI), and 18.5% for catheter-associated urinary tract infection (CAUTI), quantifying the lethal potential of these archetypal device-mediated syndromes in high-acuity environments [50]. Earlier U.S. estimates attributed 98,987 deaths to HAIs in 2002, with the largest contributions from pneumonia (35,967), bloodstream infections (30,665), urinary tract infections (13,088), surgical site infections (8,205), and other sites a distribution that still resembles (11,062),contemporary case mix in many hospitals [18]. Collectively, these data reinforce that prevention, early recognition, and decisive source control are not merely quality metrics but survival determinants.

Length of stay (LOS) inflation is the second major prognostic dimension and a key mediator of downstream harm and cost. Incremental LOS varies by infection type and care setting. A German tertiarycare study estimated an average increase of 12 days across all HAIs, with CAUTI adding roughly 3.3 days, surgical site infections (SSI) 12.9 days, and primary bloodstream infections 12.5 days; patients sustaining multiple HAIs stayed, on average, 25.6 extra days, reflecting compounding morbidity from sequential or concurrent infections [51]. In a U.S. hospital cohort, LOS was 26.30 days in patients with an HAI versus 5.69 days without, illustrating the magnitude of inpatient resource consumption attributable to nosocomial infection [52]. In developing regions, pooled analyses suggest additional LOS ranging from 5 to 23 days, with the widest impacts seen in ICUs and neonatal units where device exposure and antimicrobial resistance are most pronounced [19][53]. Longer hospitalization not only increases direct costs but also expands opportunities for further colonization, additional procedures, and adverse drug events, thereby perpetuating a cycle of risk. The economic consequences mirror these clinical patterns. Among adult inpatients in the United States, the five major HAIs are estimated to cost \$9.8 billion annually; SSIs account for about 33.7% of this burden, followed

by VAP (31.7%), CLABSI (18.9%), Clostridioides difficile infection (CDI) (15.4%), and CAUTI (0.3%), a rank order that tracks with the severity and LOS associated with each syndrome [54]. Broader CDC estimates place the total U.S. economic burden between \$28 billion and \$45 billion per year when indirect costs are incorporated. In Europe, annual costs have been approximated at €7 billion, demonstrating that HAIs impose substantial fiscal strain even in with mature infection-prevention systems infrastructures [17]. For individual institutions, these costs are realized through bed-day consumption, escalation of care, antimicrobial expenditures, reoperations, and readmissions, all of which have opportunity costs for noninfected patients awaiting beds and procedures.

Complications:

Complications shape patient-level prognosis and often dictate the required intensity and duration of therapy. In hospital-acquired pneumonia (HAP) and progression respiratory to parapneumonic effusions, empyema, and sepsis can prolong ventilator dependence and increase mortality, particularly in patients with antecedent lung disease or those exposed to prior broad-spectrum antibiotics selecting for resistant gram-negative bacilli [30][31]. CLABSI can extend beyond bacteremia to suppurative thrombophlebitis, endocarditis, vertebral osteomyelitis, septic arthritis, deep abscess formation, and septic shock, each complication demanding more invasive diagnostics, device removal, and protracted antimicrobial courses with attendant toxicity risks [23]. CAUTI, while often perceived as lower acuity, may ascend to pyelonephritis, precipitate bacteremia, culminate in sepsis immunocompromised hosts, especially when biofilmladen catheters are left in situ [24][25]. SSIs impair wound healing, necessitate reoperation or removal of infected prostheses, and can seed organ spaces, generating intra-abdominal or mediastinal infections that escalate mortality and cost [27][28][29]. Healthcare-onset CDI imposes a unique recurrent disease burden; patients may endure cycles of antibiotic-associated relapse, dehydration, and electrolyte disorders, and a subset will develop fulminant colitis with ileus or toxic megacolon, occasionally requiring colectomy and carrying high short-term mortality [35]. The cumulative risk of these complications is magnified in patients with multiple invasive devices, malnutrition, hyperglycemia, or immunosuppression—common features in modern hospitalized populations.

Outcomes:

Despite these sobering outcomes, prognosis is modifiable. Institution-wide adherence to evidence-based prevention bundles and antimicrobial stewardship has repeatedly demonstrated reductions in incidence, severity, and downstream costs. The single most impactful behavior remains hand hygiene. The

World Health Organization's "Five Moments" framework—before touching a patient; before clean/aseptic procedures; after exposure to body fluids; after touching a patient; and after touching patient surroundings—operationalizes hand hygiene at the point of care and has been associated with significant reductions in transmission when reliably implemented [55]. Alcohol-based hand rubs are preferred in most situations because of superior accessibility and compliance, though soap and water are required when hands are visibly soiled, after contact with body fluids, or when caring for patients with spore-forming pathogens such as C. difficile [55]. Multiple studies have linked improved compliance to lowered pathogen load and measurable decreases in HAI rates, translating into better patient survival and shorter LOS [56][57]. Standard and transmissionbased precautions further alter the trajectory of both cases and ward-level individual Appropriate use of gloves, gowns, masks, and eye protection, along with contact, droplet, or airborne isolation as indicated, interrupts spread from colonized or infected patients-an effect most visible with multidrug-resistant organisms, C. difficile, and respiratory viruses [55]. Equally, rigorous aseptic technique during insertion and maintenance of central lines, urinary catheters, and endotracheal tubes reduces initial inoculation and biofilm seeding, thereby preventing the infections most tightly linked excess mortality and LOS [39]40[36]. Environmental hygiene is integral to prognosis as well: high-touch surfaces such as water taps, door handles, and worktops often harbor viable organisms; systematic cleaning and disinfection, along with safe handling of clinical waste—20% to 25% of which may pose high transmission risk—reduce environmental reservoirs that perpetuate outbreaks [58]. Programs that audit cleaning quality and feed back results to environmental services staff have been associated with sustained reductions in HAI incidence.

Finally, antimicrobial stewardship exerts a decisive influence on both immediate outcomes and the long-term ecology that shapes future prognoses. Up to half of outpatient antibiotic prescriptions are unnecessary, a pattern mirrored to varying degrees in inpatient care; such overuse increases adverse events, drives C. difficile risk, and accelerates resistance, which in turn reduces the efficacy of empiric regimens for HAP, VAP, CLABSI, and SSI [59][60]. Stewardship initiatives—prospective audit and feedback, syndrome-specific order sets, duration optimization, de-escalation based on cultures, and pharmacist-led dosing—have been linked to improved cure rates, fewer adverse drug reactions, shorter therapy durations, and fewer relapses. When integrated with rapid diagnostics and device-necessity "time-outs," these programs not only improve individual patient trajectories but also bend institutional resistance curves, improving the future prognosis of patients yet to be admitted. In sum, while

HAIs continue to exact a heavy toll in deaths, disability days, and dollars, their prognosis is highly sensitive to preventable factors. Mortality remains elevated-especially in ICUs and among deviceassociated syndromes—with substantial excess LOS and multibillion-dollar annual costs across high- and middle-income settings [8][50][18][51][52][54][17]. Yet aggressive prevention, early source control, and disciplined antimicrobial practice can meaningfully shift outcomes. For patients, this means greater chances of survival without major complications; for hospitals, it means reclaimed capacity and resources; and for health systems, it means progress against antimicrobial resistance. The enduring lesson of the HAI literature is that prognosis is not fixed but forged at the bedside—hand by hand, line by line, case by case—where consistent adherence to simple, evidence-based practices transforms risk into resilience [55][56][57][58][59][60].

Conclusion:

conclusion, combating healthcareassociated infections demands an unwavering, integrated approach that leverages the unique expertise of pharmacists, nurses, and administrators. The prognosis of HAIs, which remains serious with significant associated mortality, prolonged hospitalization, and substantial economic costs, is not fixed but can be positively altered through decisive, evidence-based action. The cornerstone of success lies in the rigorous application of prevention strategies, including hand hygiene, adherence to aseptic techniques, and the implementation of device-specific care bundles to eliminate common sources of infection. Simultaneously, antimicrobial stewardship led by pharmacists is critical to ensuring the timely and appropriate use of antibiotics, thereby curbing the emergence and spread of multidrug-resistant organisms that complicate treatment. Ultimately, reducing the burden of HAIs is a shared responsibility that transcends individual clinical roles. It requires a systemic commitment where nursing professionals frontline compliance with protocols, pharmacists guide optimal therapeutic choices, and administrators create a supportive infrastructure through policy, resource allocation, and a culture of safety. This interprofessional synergy is essential to translate knowledge into consistent practice, safeguarding patients from preventable harm. By sustaining this collaborative model, healthcare systems can significantly diminish the incidence and impact of HAIs, leading to improved patient outcomes, more efficient resource use, and a fundamental enhancement in the quality and safety of care delivered across all settings.

References:

 Magill SS, O'Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lynfield R, Greissman S, Ray SM, Beldavs Z, Gross C, Bamberg W, Sievers M, Concannon C, Buhr N, Warnke L, Maloney M, Ocampo V,

- Brooks J, Oyewumi T, Sharmin S, Richards K, Rainbow J, Samper M, Hancock EB, Leaptrot D, Scalise E, Badrun F, Phelps R, Edwards JR, Emerging Infections Program Hospital Prevalence Survey Team. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. The New England journal of medicine. 2018 Nov 1:379(18):1732-1744. doi: 10.1056/NEJMoa1801550.
- Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, Jans B, Hopkins S, Hansen S, Lyytikäinen O, Reilly J, Deptula A, Zingg W, Plachouras D, Monnet DL, Healthcare-Associated Infections Prevalence Study Group. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2018 Nov:23(46):. doi: 10.2807/1560-7917.ES.2018.23.46.1800516.
- 3. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet (London, England). 2011 Jan 15:377(9761):228-41. doi: 10.1016/S0140-6736(10)61458-4.
- Storr J, Twyman A, Zingg W, Damani N, Kilpatrick C, Reilly J, Price L, Egger M, Grayson ML, Kelley E, Allegranzi B, WHO Guidelines Development Group. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrobial resistance and infection control. 2017:6():6. doi: 10.1186/s13756-016-0149-9.
- Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. The New England journal of medicine. 2014 Mar 27:370(13):1198-208. doi: 10.1056/NEJMoa1306801.
- 6. Ewan VC, Witham MD, Kiernan M, Simpson AJ. Hospital-acquired pneumonia surveillance-an unmet need. The Lancet. Respiratory medicine. 2017 Oct:5(10):771-772. doi: 10.1016/S2213-2600(17)30296-5.
- 7. Falagas ME, Kopterides P, Siempos II. Attributable mortality of Acinetobacter baumannii infection among critically ill patients. Clinical infectious diseases : an official

- publication of the Infectious Diseases Society of America. 2006 Aug 1:43(3):389; author reply 389-90
- Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009 Dec 2:302(21):2323-9. doi: 10.1001/jama.2009.1754.
- Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, McCarthy N, Paul P, McDonald LC, Kallen A, Fiore A, Craig M, Baggs J. Multidrug-Resistant Bacterial Infections in U.S. Hospitalized Patients, 2012-2017. The New England journal of medicine. 2020 Apr 2:382(14):1309-1319. doi: 10.1056/NEJMoa1914433.
- 10. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infection control and hospital epidemiology. 2013 Jan:34(1):1-14. doi: 10.1086/668770.
- 11. Spivak ES, Hanson KE. Candida auris: an Emerging Fungal Pathogen. Journal of clinical microbiology. 2018 Feb:56(2):. doi: 10.1128/JCM.01588-17
- Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infection control and hospital epidemiology. 2016 Nov:37(11):1288-1301
- Park JH, Ryu SH, Lee JY, Kim HJ, Kwak SH, Jung J, Lee J, Sung H, Kim SH. Airborne fungal spores and invasive aspergillosis in hematologic units in a tertiary hospital during construction: a prospective cohort study. Antimicrobial resistance and infection control. 2019:8():88. doi: 10.1186/s13756-019-0543-1.
- 14. Lemaire B, Normand AC, Forel JM, Cassir N, Piarroux R, Ranque S. Hospitalized Patient as Source of Aspergillus fumigatus, 2015. Emerging infectious diseases. 2018 Aug:24(8):1524-1527. doi: 10.3201/eid2408.171865. Epub
- Aitken C, Jeffries DJ. Nosocomial spread of viral disease. Clinical microbiology reviews. 2001 Jul:14(3):528-46
- 16. Ganczak M, Barss P. Nosocomial HIV infection: epidemiology and prevention--a global

- perspective. AIDS reviews. 2008 Jan-Mar:10(1):47-61
- 17. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, Wolff M, Spencer RC, Hemmer M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995 Aug 23-30:274(8):639-44
- Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public health reports (Washington, D.C.: 1974). 2007 Mar-Apr:122(2):160-6
- 19. Ling ML, Apisarnthanarak A, Madriaga G. The Burden of Healthcare-Associated Infections in Southeast Asia: A Systematic Literature Review and Meta-analysis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2015 Jun 1:60(11):1690-9. doi: 10.1093/cid/civ095.
- Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. European respiratory review: an official journal of the European Respiratory Society. 2020 Mar 31:29(155):. doi: 10.1183/16000617.0068-2020.
- 21. Climo M, Diekema D, Warren DK, Herwaldt LA, Perl TM, Peterson L, Plaskett T, Price C, Sepkowitz K, Solomon S, Tokars J, Fraser VJ, Wong E. Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention. Infection control and hospital epidemiology. 2003 Dec:24(12):942-5
- Bell T, O'Grady NP. Prevention of Central Line-Associated Bloodstream Infections. Infectious disease clinics of North America. 2017 Sep:31(3):551-559. doi: 10.1016/j.idc.2017.05.007.
- 23. Baier C, Linke L, Eder M, Schwab F, Chaberny IF, Vonberg RP, Ebadi E. Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. PloS one. 2020:15(1):e0227772. doi: 10.1371/journal.pone.0227772.
- 24. Letica-Kriegel AS, Salmasian H, Vawdrey DK, Youngerman BE, Green RA, Furuya EY, Calfee DP, Perotte R. Identifying the risk factors for catheter-associated urinary tract infections: a large cross-sectional study of six hospitals. BMJ open. 2019 Feb 21:9(2):e022137. doi: 10.1136/bmjopen-2018-022137.
- Isikgoz Tasbakan M, Durusoy R, Pullukcu H, Sipahi OR, Ulusoy S, 2011 Turkish Nosocomial

- Urinary Tract Infection Study Group. Hospital-acquired urinary tract infection point prevalence in Turkey: differences in risk factors among patient groups. Annals of clinical microbiology and antimicrobials. 2013 Nov 4:12():31. doi: 10.1186/1476-0711-12-31. Epub 2013 Nov 4
- Anderson DJ, Podgorny K, Berríos-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, Kaye KS. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infection control and hospital epidemiology. 2014 Sep:35 Suppl 2():S66
- 27. Mukagendaneza MJ, Munyaneza E, Muhawenayo E, Nyirasebura D, Abahuje E, Nyirigira J, Harelimana JD, Muvunyi TZ, Masaisa F, Byiringiro JC, Hategekimana T, Muvunyi CM. Incidence, root causes, and outcomes of surgical site infections in a tertiary care hospital in Rwanda: a prospective observational cohort study. Patient safety in surgery. 2019:13():10. doi: 10.1186/s13037-019-0190-8.
- Mioton LM, Jordan SW, Hanwright PJ, Bilimoria KY, Kim JY. The Relationship between Preoperative Wound Classification and Postoperative Infection: A Multi-Institutional Analysis of 15,289 Patients. Archives of plastic surgery. 2013 Sep:40(5):522-9. doi: 10.5999/aps.2013.40.5.522.
- 29. Gibbons C, Bruce J, Carpenter J, Wilson AP, Wilson J, Pearson A, Lamping DL, Krukowski ZH, Reeves BC. Identification of risk factors by systematic review and development of risk-adjusted models for surgical site infection. Health technology assessment (Winchester, England). 2011 Sep:15(30):1-156, iii-iv. doi: 10.3310/hta15300.
- Klompas M, Branson R, Eichenwald EC, Greene LR, Howell MD, Lee G, Magill SS, Maragakis LL, Priebe GP, Speck K, Yokoe DS, Berenholtz SM. Strategies to prevent ventilator-associated pneumonia in acute care hospitals: 2014 update. Infection control and hospital epidemiology. 2014 Sep:35 Suppl 2():S133-54
- 31. Komiya K, Ishii H, Kadota J. Healthcare-associated Pneumonia and Aspiration Pneumonia. Aging and disease. 2015 Feb:6(1):27-37. doi: 10.14336/AD.2014.0127.
- 32. Kózka M, Sega A, Wojnar-Gruszka K, Tarnawska A, Gniadek A. Risk Factors of Pneumonia Associated with Mechanical Ventilation. International journal of environmental research and public health. 2020 Jan 19:17(2):. doi: 10.3390/ijerph17020656.
- 33. Kumar ST, Yassin A, Bhowmick T, Dixit D. Recommendations From the 2016 Guidelines for the Management of Adults With Hospital-Acquired or Ventilator-Associated Pneumonia. P & T: a peer-reviewed journal for formulary management. 2017 Dec:42(12):767-772

- 34. Roberts K, Smith CF, Snelling AM, Kerr KG, Banfield KR, Sleigh PA, Beggs CB. Aerial dissemination of Clostridium difficile spores. BMC infectious diseases. 2008 Jan 24:8():7. doi: 10.1186/1471-2334-8-7.
- 35. Loo VG, Bourgault AM, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost EH, Gilca R, Brassard P, Dendukuri N, Béliveau C, Oughton M, Brukner I, Dascal A. Host and pathogen factors for Clostridium difficile infection and colonization. The New England journal of medicine. 2011 Nov 3:365(18):1693-703. doi: 10.1056/NEJMoa1012413.
- Papazian L, Klompas M, Luyt CE. Ventilatorassociated pneumonia in adults: a narrative review. Intensive care medicine. 2020 May:46(5):888-906. doi: 10.1007/s00134-020-05980-0.
- 37. Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, Nguyen HH, Huang B, Tang YW, Lee LW, Kim K, Taylor S, Romano PS, Panacek EA, Goodell PB, Solnick JV, Cohen SH. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. JAMA internal medicine. 2015 Nov:175(11):1792-801. doi: 10.1001/jamainternmed.2015.4114.
- 38. Madden GR, Poulter MD, Sifri CD. Diagnostic stewardship and the 2017 update of the IDSA-SHEA Clinical Practice Guidelines for Clostridium difficile Infection. Diagnosis (Berlin, Germany). 2018 Sep 25:5(3):119-125. doi: 10.1515/dx-2018-0012.
- 39. Lutwick L, Al-Maani AS, Mehtar S, Memish Z, Rosenthal VD, Dramowski A, Lui G, Osman T, Bulabula A, Bearman G. Managing and preventing vascular catheter infections: A position paper of the international society for infectious diseases. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases. 2019 Jul:84():22-29. doi: 10.1016/j.ijid.2019.04.014.
- 40. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P, Nicolle LE, Infectious Diseases Society of America. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2010 Mar 1:50(5):625-63
- 41. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, Fish DN, Napolitano LM, Sawyer RG, Slain D, Steinberg JP, Weinstein RA, American Society of Health-System Pharmacists (ASHP), Infectious Diseases Society

- of America (IDSA), Surgical Infection Society (SIS), Society for Healthcare Epidemiology of America (SHEA). Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surgical infections. 2013 Feb:14(1):73-156. doi: 10.1089/sur.2013.9999.
- 42. Khanna S, Assi M, Lee C, Yoho D, Louie T, Knapple W, Aguilar H, Garcia-Diaz J, Wang GP, Berry SM, Marion J, Su X, Braun T, Bancke L, Feuerstadt P. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent Clostridioides difficile Infection. Drugs. 2022 Oct:82(15):1527-1538. doi: 10.1007/s40265-022-01797-x.
- 43. Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft CS, Cohen SH, Berenson CS, Korman LY, Ford CB, Litcofsky KD, Lombardo MJ, Wortman JR, Wu H, Auniņš JG, McChalicher CWJ, Winkler JA, McGovern BH, Trucksis M, Henn MR, von Moltke L. SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. The New England journal of medicine. 2022 Jan 20:386(3):220-229. doi: 10.1056/NEJMoa2106516.
- 44. Dinleyici M, Vandenplas Y. Clostridium difficile Colitis Prevention and Treatment. Advances in experimental medicine and biology. 2019:1125():139-146. doi: 10.1007/5584 2018 322.
- 45. Polage CR, Solnick JV, Cohen SH. Nosocomial diarrhea: evaluation and treatment of causes other than Clostridium difficile. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2012 Oct:55(7):982-9. doi: 10.1093/cid/cis551.
- 46. Koch AM, Nilsen RM, Eriksen HM, Cox RJ, Harthug S. Mortality related to hospitalassociated infections in a tertiary hospital; repeated cross-sectional studies between 2004-2011. Antimicrobial resistance and infection control. 2015:4():57. doi: 10.1186/s13756-015-0097-9.
- 47. Kanerva M, Ollgren J, Virtanen MJ, Lyytikäinen O, Prevalence Survey Study Group. Risk factors for death in a cohort of patients with and without healthcare-associated infections in Finnish acute care hospitals. The Journal of hospital infection. 2008 Dec:70(4):353-60. doi: 10.1016/j.jhin.2008.08.009.
- 48. Vincent JL. Nosocomial infections in adult intensive-care units. Lancet (London, England). 2003 Jun 14:361(9374):2068-77
- 49. Soufir L, Timsit JF, Mahe C, Carlet J, Regnier B, Chevret S. Attributable morbidity and mortality of catheter-related septicemia in critically ill patients: a matched, risk-adjusted, cohort study.

- Infection control and hospital epidemiology. 1999 Jun:20(6):396-401
- 50. Rosenthal VD, Maki DG, Jamulitrat S, Medeiros EA, Todi SK, Gomez DY, Leblebicioglu H, Abu Khader I, Miranda Novales MG, Berba R, Ramírez Wong FM, Barkat A, Pino OR, Dueñas L, Mitrev Z, Bijie H, Gurskis V, Kanj SS, Mapp T, Hidalgo RF, Ben Jaballah N, Raka L, Gikas A, Ahmed A, Thu le TA, Guzmán Siritt ME, INICC Members. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. American journal of infection control. 2010 Mar:38(2):95-104.e2. doi: 10.1016/j.ajic.2009.12.004.
- 51. Arefian H, Hagel S, Fischer D, Scherag A, Brunkhorst FM, Maschmann J, Hartmann M. Estimating extra length of stay due to healthcare-associated infections before and after implementation of a hospital-wide infection control program. PloS one. 2019:14(5):e0217159. doi: 10.1371/journal.pone.0217159.
- 52. Shepard J, Frederick J, Wong F, Madison S, Tompkins L, Hadhazy E. Could the prevention of health care-associated infections increase hospital cost? The financial impact of health care-associated infections from a hospital management perspective. American journal of infection control. 2020 Mar:48(3):255-260. doi: 10.1016/j.ajic.2019.08.035.
- 53. Esatoğlu AE, Agirbas I, Onder OR, Celik Y. Additional cost of hospital-acquired infection to the patient: a case study in Turkey. Health services management research. 2006 Aug; 19(3):137-43
- 54. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, Keohane C, Denham CR, Bates DW. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA internal medicine. 2013 Dec 9-23:173(22):2039-46. doi: 10.1001/jamainternmed.2013.9763.
- Mathai E, Allegranzi B, Kilpatrick C, Pittet D. Prevention and control of health care-associated infections through improved hand hygiene. Indian journal of medical microbiology. 2010 Apr-Jun:28(2):100-6. doi: 10.4103/0255-0857.62483.
- 56. Pittet D, Allegranzi B, Sax H, Dharan S, Pessoa-Silva CL, Donaldson L, Boyce JM, WHO Global Patient Safety Challenge, World Alliance for Patient Safety. Evidence-based model for hand transmission during patient care and the role of improved practices. The Lancet. Infectious diseases. 2006 Oct:6(10):641-52
- 57. Allegranzi B, Pittet D. Role of hand hygiene in healthcare-associated infection prevention. The Journal of hospital infection. 2009 Dec:73(4):305-15. doi: 10.1016/j.jhin.2009.04.019.
- 58. Bagheri Nejad S, Allegranzi B, Syed SB, Ellis B, Pittet D. Health-care-associated infection in

- Africa: a systematic review. Bulletin of the World Health Organization. 2011 Oct 1:89(10):757-65. doi: 10.2471/BLT.11.088179.
- 59. Colgan R, Powers JH. Appropriate antimicrobial prescribing: approaches that limit antibiotic resistance. American family physician. 2001 Sep 15:64(6):999
- 60. Weiner LM, Fridkin SK, Aponte-Torres Z, Avery L, Coffin N, Dudeck MA, Edwards JR, Jernigan JA, Konnor R, Soe MM, Peterson K, McDonald LC. Vital Signs: Preventing Antibiotic-Resistant Infections in Hospitals United States, 2014. MMWR. Morbidity and mortality weekly report. 2016 Mar 11:65(9):235-41. doi: 10.15585/mmwr.mm6509e1.