

Saudi Journal of Medicine and Public Health

https://saudijmph.com/index.php/pub https://doi.org/10.64483/202522251

Interdisciplinary Strategies for Optimizing Prenatal Genetic Screening in Family-Centered Care Systems

Ali Ahmad Altherwi $^{(1)}$, Hamoud Awad Al-Harbi $^{(2)}$, Matar Omishan Alhazmi $^{(3)}$, Fahad Lafi Aljohani $^{(4)}$, Yasser Ali Mubrk Alsuhimi $^{(5)}$, Abdullah Mastour M $^{(5)}$, Naif Gobishan ALsuhaymi $^{(5)}$, Ataallah Awadh Alsehaimi $^{(5)}$, Turke Ali Alajmi $^{(6)}$, Ahmad Abdulsattar Zaghoun $^{(7)}$, Marwan Saud Alharbi $^{(8)}$

- (1) Jazan Health Cluster, Ministry of Health, Saudi Arabia,
- (2) Erada And Mental Health Hospital, Ministry of Health, Saudi Arabia,
- (3) Saudi Red Crescent Authority North Promise Ambulance Center Arar Northern Borders, Saudi Arabia,
- (4) King Fahd Hospital In Medina, Ministry of Health, Saudi Arabia,
- (5) King Salman Bin Abdulaziz Medical City, Ministry of Health, Saudi Arabia,
- (6) Ministry Of Health Cluster 1 Riyadh, Saudi Arabia,
- (7) Healthcare Strategies Madinah Cluster, Ministry of Health, Saudi Arabia,
- (8) Bed Management Madinah Cluster, Ministry of Health, Saudi Arabia.

Abstract

Background: Prenatal genetic screening has evolved from basic serum tests into a sophisticated component of modern reproductive care, capable of assessing risk for a wide range of fetal chromosomal and genetic conditions. This expansion, which now includes first and second-trimester serum analytics, nuchal translucency ultrasound, cell-free DNA (cfDNA) testing, and universal carrier screening, necessitates a highly coordinated and informed approach to ensure equitable and effective patient care.

Aim: This article aims to outline interdisciplinary strategies for optimizing prenatal genetic screening within a family-centered care model. It emphasizes the critical role of patient education, shared decision-making, and the careful integration of various screening modalities to support informed reproductive choices.

Methods: The review synthesizes established clinical procedures and guidelines, detailing the technical execution of screening methods, appropriate specimen collection, and the interpretation of complex results. It highlights the importance of pre-test and post-test genetic counseling to navigate the benefits, limitations, and potential outcomes of each testing pathway.

Results: A patient-centered approach, where all pregnant individuals are offered screening regardless of perceived risk, is fundamental. While cfDNA offers high sensitivity for common aneuploidies, factors like low fetal fraction can lead to indeterminate results. All positive screens require confirmation with diagnostic procedures like amniocentesis. Effective management relies on clear communication among clinicians, genetic counselors, sonographers, and laboratory staff.

Conclusion: Optimizing prenatal genetic screening requires a collaborative, interdisciplinary effort focused on patient safety, education, and ethical counseling. This integrated model empowers families with knowledge, facilitates early diagnosis and planning, and ultimately improves maternal-fetal outcomes.

Keywords: Prenatal Genetic Screening, Interdisciplinary Care, Cell-Free DNA, Genetic Counseling, Patient-Centered Care, Aneuploidy, Carrier Screening

Introduction

Prenatal genetic screening represents one of the most transformative advances in modern reproductive health, evolving significantly since its inception and now serving as a central component of comprehensive prenatal care. The earliest form of prenatal screening emerged in the 1970s with the introduction of the maternal serum alpha-fetoprotein (MSAFP) assay, a second-trimester test designed to identify pregnancies affected by neural tube defects.[1] By the 1980s, additional maternal serum markers became available, enabling the detection of common aneuploidies. Since

then, ongoing improvements in genetic science, laboratory technology, and ultrasound imaging have steadily expanded the scope, accuracy, and clinical utility of prenatal screening. Today, prenatal genetic screening is capable of assessing a wide range of fetal chromosomal and genetic conditions, while prenatal diagnostic testing—performed through procedures such as chorionic villus sampling (CVS) and amniocentesis—provides confirmatory information when screening results indicate increased risk.[2] Prenatal screening was initially developed to detect trisomy 21 (T21), or Down syndrome, given its

Receive Date: 29 October 2025, Revise Date: 16 November 2025, Accept Date: 20 November 2025

prevalence and clinical significance. Over time, however, technological advances broadened the screening capabilities to include additional chromosomal abnormalities such as trisomy 13 (T13), trisomy 18 (T18), sex chromosome aneuploidies, and selected microdeletion syndromes.[2] Screening modalities have similarly diversified. First-trimester screening incorporates both nuchal translucency (NT) ultrasound measurement and maternal serum analytes, offering early risk assessment. Second-trimester testing may involve triple, quadruple, or penta-marker serum screening. These modalities, when combined using integrated, sequential-stepwise, or contingent approaches, provide significantly higher detection rates than either test alone, enhancing the precision of risk estimation for pregnant individuals.[3] Among contemporary methods, cell-free DNA (cfDNA) testing—also termed noninvasive prenatal testing (NIPT)—yields the highest sensitivity and specificity for common aneuploidies and has become widely adopted as a first-line screening option for pregnant patients.

Prenatal genetic screening also extends beyond fetal aneuploidy assessment to include carrier screening, which identifies individuals who carry heterozygous pathogenic variants associated with autosomal recessive or X-linked disorders. Carrier screening can be performed before conception or at any point during pregnancy. While early approaches to carrier screening targeted specific ethnic groups with known higher prevalence of particular genetic conditions for example, Tay-Sachs disease in Ashkenazi Jewish populations—this strategy has become increasingly impractical due to widespread population admixture and the difficulty of accurately determining an individual's ancestral background. As a result, professional societies now emphasize universal or "panethnic" carrier screening to ensure equitable access and avoid missed diagnoses among diverse patient populations. Reflecting this shift, the American College of Obstetricians and Gynecologists (ACOG) recommends that all individuals, regardless of race or ethnicity, be offered carrier screening for a standardized panel of conditions.[4] Furthermore, ACOG advises that all individuals contemplating pregnancy or already pregnant undergo screening for specific disorders, including cystic fibrosis, spinal muscular atrophy, and hemoglobinopathies such as thalassemia and sickle cell disease.[5] In addition to these core conditions, expanded carrier screening panels are increasingly available, allowing for simultaneous assessment of dozens-or even hundreds-of genetic disorders. The breadth of available options underscores the importance of individualized counseling and shared decision-making in the selection of appropriate tests.

Regardless of the prenatal screening strategies chosen, counseling remains a critical component of the process. Patients must receive clear, balanced, and culturally appropriate information about the purpose,

benefits, limitations, and potential outcomes of both screening and diagnostic tests. Pre-test counseling allows patients to make informed decisions that align with their values and preferences, while post-test counseling ensures that results-whether positive, negative, or of uncertain significance—are accurately interpreted and appropriately acted upon. Counseling may involve discussions about false-positive and false-negative results, the possibility of needing diagnostic testing, the implications of detected genetic conditions, and available reproductive or clinical management options. As prenatal genetic screening continues to expand in scope and complexity, healthcare providers—including clinicians, nurses, laboratory personnel, genetic counselors, administrators—must remain well-informed collaboratively engaged to ensure the highest standards of care. Through coordinated efforts and patient-centered communication, prenatal genetic screening can effectively support informed reproductive choices, early diagnosis, and improved maternal–fetal outcomes in diverse populations.[1–5]

Specimen Collection

Specimen collection for prenatal genetic screening requires careful adherence to standardized protocols to ensure accuracy, reliability, and clinical validity of test results. Most prenatal screening tests rely on maternal venipuncture, as maternal blood provides essential biomarkers, circulating fetal DNA fragments, and hematologic parameters necessary for evaluating fetal risk and parental carrier status. In routine first- and second-trimester screening, maternal blood samples are collected to measure serum analytes such as serum alpha-fetoprotein maternal (MSAFP), pregnancy-associated plasma protein-A (PAPP-A), free beta-human chorionic gonadotropin (β-hCG), inhibin A, and unconjugated estriol. These biomarkers play a critical role in estimating the likelihood of fetal chromosomal abnormalities or structural anomalies. Ensuring proper timing is essential; first-trimester serum screening is typically performed between 10 and 13 weeks of gestation, while second-trimester analyte testing is generally conducted between 15 and 22 weeks.[6] As part of the first-trimester combined screening protocol, a transabdominal ultrasound is obtained between 11 and 14 weeks of gestation to measure the nuchal translucency (NT). sonographic assessment must follow stringent measurement standards, including obtaining a midsagittal image and ensuring proper fetal positioning, caliper placement, and magnification to reduce interobserver variability. Accurate NT measurement improves the predictive value of the combined screening test and integrates directly with serum analyte data to refine risk estimates.[6]

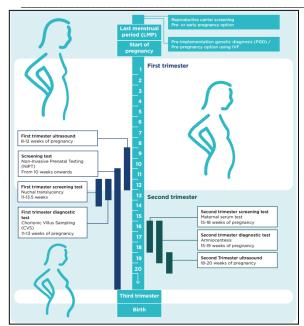


Fig. 1: Prenatal Fetal Testing.

Cell-free DNA (cfDNA) testing, also performed via maternal venipuncture, represents a more advanced form of prenatal screening. In this method, fragments of fetal-origin DNA-shed primarily from placental trophoblasts—are isolated from maternal plasma. After separation of plasma from whole blood, specialized laboratory techniques extract, purify, and amplify cfDNA for sequencing or targeted analysis. Single-nucleotide polymorphism-based methods are commonly used, allowing for highly sensitive detection of common aneuploidies such as trisomy 21, trisomy 18, and trisomy 13, as well as selected sex chromosome abnormalities.[3] The accuracy of cfDNA analysis depends in part on the fetal fraction, which is influenced by gestational age, maternal body mass index, and placental health. Proper specimen handling—including prompt processing avoidance of hemolysis—is crucial for optimal test performance. Carrier screening, another major component of prenatal genetic evaluation, also relies on venous blood samples. For hemoglobinopathies such as thalassemias and sickle cell disease, initial testing begins with a complete blood count (CBC) to assess red blood cell indices such as mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH). Abnormal indices may indicate the need for further confirmatory testing. Hemoglobin electrophoresis high-performance or chromatography is subsequently performed to identify abnormal hemoglobin variants or quantify normal and abnormal hemoglobins, enabling diagnosis of hemoglobinopathies in either parent. These results help determine the risk of the fetus inheriting a significant hemoglobin disorder. Across all prenatal genetic screening tests, proper specimen collection procedures—such as correct tube selection, timely transport, appropriate temperature control, and avoidance of contamination—are essential for maintaining the integrity of the sample. When collected and processed correctly, maternal blood and ultrasound data provide an accurate, noninvasive means of assessing fetal genetic risk and guiding patient-centered prenatal care [6].

Procedures

Prenatal genetic screening and diagnostic testing must be offered to all pregnant individuals, regardless of maternal age or perceived risk, in accordance with modern standards of equitable reproductive care. The decision to pursue screening should arise from an open, balanced, and non-directive conversation between the healthcare provider and patient. This dialogue must consider multiple factors that shape the appropriateness and desirability of specific screening modalities, including maternal age, the couple's reproductive goals, the degree of desired prenatal information, previous obstetric or family history of genetic disorders, gestational age at presentation, financial implications, and the expected turnaround time for test results as decisions regarding pregnancy management may be time-sensitive.[3] Informed choice is essential, and presenting screening as optional—rather than routine—upholds patient autonomy and supports shared decision-making. Screening modalities differ considerably in terms of when they can be performed during pregnancy and the breadth of information they provide. First-trimester screening is confined to the narrow gestational window between 10 weeks and 13 weeks, 6 days. Second-trimester marker screening—including the triple, quadruple (quad), and penta screens—is generally performed between 15 and 22 weeks of gestation. Cell-free DNA (cfDNA) testing provides a more flexible option, as it can be administered any time from 10 weeks onward and offers superior detection rates for the most common fetal aneuploidies.

First-trimester genetic screening encompasses several options, most often the combined first-trimester screen, which includes both maternal serum analyte testing and nuchal translucency (NT) ultrasound assessment. The key biomarkers measured in firsttrimester serum are pregnancy-associated plasma protein-A (PAPP-A) and free β-hCG. measurement is performed via transabdominal ultrasound, requiring strict adherence to established technical standards. The fetus must be imaged in a true sagittal plane, with a crown-rump length (CRL) between 45 and 84 mm. These parameters, established by the Fetal Medicine Foundation, minimize operator variability and improve reproducibility of NT thickness measurements, which reflect fluid accumulation behind the fetal neck—an important marker of chromosomal and structural abnormalities.[7] Second-trimester serum-based screening provides additional options. The triple screen measures β-hCG, maternal serum alphafetoprotein (MSAFP), and unconjugated estriol.[8]

The quadruple screen, one of the most commonly used second-trimester tests, adds inhibin A, improving sensitivity particularly for detecting trisomy 21. The penta screen incorporates hyperglycosylated hCG along with the four established markers, further refining risk calculations.[3] These serum screening modalities remain valuable, especially for patients presenting later in pregnancy or residing in areas where cfDNA testing is less accessible.

First- and second-trimester tests may be combined into integrated, sequential-stepwise, or contingent screening strategies to enhance detection accuracy while minimizing false-positive rates. The integrated screen withholds results from the first trimester until second-trimester quad screen data are available, providing one consolidated risk estimate. Although this approach yields high sensitivity, patients must wait longer for results. Sequential-stepwise screening releases first-trimester results promptly; if these results are positive, diagnostic testing-typically chorionic villus sampling or amniocentesis—is offered, and no further screening is performed if diagnostic testing is chosen. If first-trimester results are negative, patients continue to the quad screen, completing the two-step process.[3] Contingent screening stratifies patients into low-, intermediate-, and high-risk groups based on first-trimester results. Low-risk individuals require no additional testing. individuals are offered diagnostic procedures, and those in the intermediate category undergo additional second-trimester serum screening to refine their risk assessment.[9] This tiered approach optimizes resource use and minimizes unnecessary invasive procedures. Carrier screening operates somewhat differently from aneuploidy screening. Ideally performed before conception, it allows couples sufficient time for counseling about reproductive risks and consideration of assisted reproductive options, including preimplantation genetic testing.[10] When conducted during pregnancy, screening begins with the pregnant individual. If they are found to be a carrier of a recessive or X-linked condition, targeted testing for the specific gene variant is recommended for their reproductive partner. If time is limited, concurrent screening of both partners may be warranted.[5] In the event that both partners carry pathogenic variants associated with the same genetic disorder, genetic counseling becomes essential to review inheritance patterns, recurrence risk, and diagnostic options such as CVS or amniocentesis. Across all procedures, the ultimate goal of prenatal genetic screening is to provide accurate, timely, and meaningful information that supports informed reproductive decision-making while ensuring patient autonomy, minimizing anxiety, and facilitating access to appropriate diagnostic and supportive services.

Indications

Indications for prenatal genetic screening and diagnostic testing are guided by recommendations established by leading professional organizations, including the American College of Obstetricians and Gynecologists (ACOG), the Society for Maternal-Fetal Medicine (SMFM), the American College of Medical Genetics and Genomics (ACMG), and the United States Preventive Services Task Force (USPSTF). Collectively, these organizations emphasize that prenatal genetic screening should not be restricted to individuals considered "high risk." Rather, ACOG advises that all pregnant patients, irrespective of maternal age, ethnicity, or personal and family history, be offered comprehensive prenatal genetic screening and diagnostic testing options.[11] This universal approach recognizes that chromosomal abnormalities such as trisomy 21 (T21), trisomy 18 (T18), and trisomy 13 (T13) can occur in any pregnancy, and that limiting screening based on demographic criteria can lead to missed opportunities for early detection. The ACMG further recommends that patients be clearly informed of the availability and high accuracy of cell-free DNA (cfDNA) testing, which screens for T21, T18, T13, and sex chromosome aneuploidies.[11] cfDNA testing has become widely accepted due to its superior sensitivity and specificity compared with traditional serum analyte screening. Discussions about prenatal screening should begin early in pregnancy, ideally at the initial prenatal visit, to ensure that patients have adequate time to understand their options and make informed decisions. Early counseling should include an explanation of the conditions being screened for, the strengths and limitations of various testing modalities, and the importance of confirmatory diagnostic testing if the screening result is positive.[2][3]

A positive screening result—regardless of whether it arises from first-trimester testing, second-trimester serum screening, or cfDNA—should always be followed by an offer of diagnostic testing. Diagnostic procedures such as chorionic villus sampling or amniocentesis are essential for confirming fetal chromosomal status and guiding clinical management.[3] Conversely, if a screening test returns a low-risk or negative result, further aneuploidy screening is not recommended. Additional testing after a negative screen increases the risk of false-positive results and can lead to unnecessary anxiety, interventions, and healthcare costs. Regardless of a patient's decision about screening or diagnostic testing, all pregnant individuals should undergo a detailed second-trimester ultrasound to evaluate for fetal structural abnormalities. This ultrasound—often referred to as the anatomy scan—is ideally performed between 18 and 22 weeks of gestation and is a critical component of routine prenatal care.[3] Some sonographic findings, known collectively as "soft markers," may be associated with an increased risk of aneuploidy but can also be observed in healthy, euploid fetuses.[3][12] These markers include findings such as echogenic intracardiac focus, choroid plexus cysts, and mild pyelectasis. Because soft

markers are not diagnostic, they should never be used in isolation to infer chromosomal abnormalities.

Rather, each soft marker must be interpreted in the broader clinical context, taking into account the patient's baseline risk factors, ethnicity, gestational age, and prior screening results. For example, a soft marker identified in a patient with previously negative cfDNA results may carry minimal clinical significance, whereas the same marker in a patient who has not undergone prior screening may warrant additional genetic evaluation. When a soft marker is detected, a detailed Level II ultrasound should be performed to look for coexisting structural abnormalities that may elevate the risk of aneuploidy. If the patient has not yet undergone genetic screening, or if her prior results were inconclusive, the option of screening or diagnostic testing should be revisited.[3] Overall, the indications for prenatal genetic screening reflect a patient-centered, risk-informed, and evidence-based approach to prenatal care. Early, thorough counseling; careful interpretation of screening results; and appropriate referral for diagnostic testing are essential for optimizing maternal-fetal outcomes and supporting informed decision-making throughout pregnancy.

Normal and Critical Findings

Interpretation of prenatal genetic screening results requires an understanding of expected biomarker patterns, ultrasound findings, and the thresholds that distinguish low-risk from high-risk outcomes. Firsttrimester maternal serum analyte screeningperformed either alone or in conjunction with nuchal translucency (NT) ultrasound—categorizes patients into high-risk or low-risk groups for trisomies 21 (T21), 18 (T18), and 13 (T13). In the first trimester, pregnancy-associated plasma protein-A (PAPP-A) is a critical biochemical marker. Decreased PAPP-A levels are consistently associated with increased risk for all three major trisomies, including T21, T18, and T13. Free β-hCG demonstrates a distinct pattern, being elevated in T21 but decreased in both T18 and T13, thereby providing an important differentiating parameter when combined with PAPP-A values. Nuchal translucency measurement contributes additional diagnostic power. An NT thickness greater than 3 mm is considered abnormal and is associated with an increased likelihood of chromosomal abnormalities, as well as certain structural anomalies such as congenital heart defects. When integrated with maternal serum analytes, NT measurement substantially improves overall screening sensitivity, particularly during the early first trimester. Secondtrimester maternal serum screening, which may include triple, quadruple, or penta panels, also generates high-risk or low-risk categorizations based on characteristic analyte patterns. In the context of T21, results typically reveal decreased maternal serum alpha-fetoprotein (MSAFP) and estriol (uE3), accompanied by increased β-hCG and inhibin A, with persistently low PAPP-A carried forward from the first trimester. For T18, MSAFP, estriol, and β -hCG are all decreased, inhibin A remains within normal limits, and PAPP-A stays low. T13 patterns are less distinctive: MSAFP, estriol, β -hCG, and inhibin A generally fall within normal ranges, but PAPP-A is characteristically low. This relative normalcy of most second-trimester analytes in T13 screening makes PAPP-A a particularly valuable indicator across multiple trisomy evaluations.

Cell-free DNA (cfDNA) testing provides a more targeted, high-specificity approach by analyzing placental DNA fragments circulating in maternal blood. Results are reported individually for each tested condition, categorizing findings as high-risk or lowrisk for trisomies T21, T18, T13, sex chromosome abnormalities, and selected microdeletions, such as 22q11.2 deletion syndrome. A cfDNA report may occasionally return as a "no call", meaning the test was unable to generate a risk estimate. The American College of Medical Genetics and Genomics (ACMG) recommends that all such reports include the fetal fraction—the percentage of fetal DNA present in the maternal sample—because a low fetal fraction is associated with increased test failure rates and may itself be linked to underlying fetal or placental abnormalities.[3][13] Together, these biomarker patterns and screening outcomes guide clinical decision-making, helping identify pregnancies that warrant confirmatory diagnostic testing and closer surveillance.

Interfering Factors

The reliability of cell-free DNA (cfDNA) screening is closely tied to the fetal fraction, defined as the proportion of fetal (placental) DNA fragments present within the total cfDNA circulating in maternal plasma. For accurate analysis, a minimum fetal fraction is required, generally estimated between 2% and 4%, depending on the assay platform and laboratory methodology. When the fetal fraction falls below this threshold, the analytic signal may be insufficient to distinguish fetal chromosomal imbalances from background maternal DNA, thereby increasing the likelihood of test failure or generating uninterpretable ("no call") results.[3] Maternal weight is one of the most significant clinical variables affecting fetal fraction. In women with higher body weight or elevated body mass index (BMI), the absolute amount of maternal cfDNA is increased, leading to dilution of the fetal component. Approximately 10% of women weighing more than 250 pounds may have a fetal fraction below 4%, which directly correlates with a greater risk of cfDNA test failure. However, weight is not the only contributing factor. Early gestational age at the time of sampling also reduces fetal fraction, as placental mass and cfDNA release into the maternal circulation increase progressively with advancing gestation. Thus, samples obtained closer to 10 weeks of gestation are more vulnerable to low fetal fraction

Saudi J. Med. Pub. Health Vol. 2 No. 2 (2025)

than those collected later in the first or early second trimester.[3]

Additional factors can interfere with cfDNA screening performance. Variability in laboratory techniquesdifferences in sequencing including bioinformatic algorithms, and quality thresholds—can influence the minimum fetal fraction required and the probability of a successful result. Advanced maternal age and pregnancies conceived via in vitro fertilization (IVF) have also been associated with higher test failure rates, potentially due to underlying placental or embryologic factors that affect cfDNA release. Maternal use of low molecular weight heparin has been reported as another contributor to increased test failure, possibly through effects on sample processing or cfDNA stability. Furthermore, certain racial and ethnic backgrounds, such as Black and South Asian women, appear to be associated with a greater likelihood of low fetal fraction, though the mechanisms may be multifactorial and related to BMI distribution, placental biology, or unrecognized confounders.[3] Importantly, cfDNA results that cannot be calculated—so-called "no call" results—due to low fetal fraction or other technical limitations must not be interpreted as equivalent to low-risk findings.[14] Instead, a no call result should be considered indeterminate or unresolved. Patients with such results should be counseled that the possibility of chromosomal abnormality remains and that their residual risk may in fact be higher than that of patients with a definitive low-risk result. As part of this counseling, patients should be offered diagnostic testing-such as chorionic villus sampling or amniocentesis—to confirm exclude oraneuploidy.[14]

Multiple gestations present another important source of complexity and potential inaccuracy in cfDNA screening. When more than one fetus is present, the cfDNA signal represents a composite of all fetuses, complicating the interpretation of aneuploidy risk. Accuracy is further challenged in the setting of a vanishing twin, where cfDNA from a demised co-twin may persist transiently in the maternal circulation and confound analysis. Similarly, discordant results may arise when one twin is aneuploid and the co-twin is euploid. In such scenarios, standard cfDNA tests may have reduced performance; however, laboratories offer specialized assays designed to address or partially mitigate these issues in the context of vanishing twin pregnancies.[15] In summary, understanding the factors that interfere with cfDNA screening—particularly low fetal fraction and complex pregnancy scenarios—is essential for accurate interpretation and appropriate follow-up. Careful pre-test counseling, attention to clinical variables, and readiness to proceed to diagnostic testing when results are indeterminate are key components of high-quality prenatal care.

Complications

Although prenatal genetic screening is generally considered safe and noninvasive, several potential complications and limitations must be recognized to ensure appropriate patient counseling and informed decision-making. Most screening procedures rely on standard phlebotomy to obtain maternal blood samples. While venipuncture is a routine clinical procedure, it is not without risks. Patients may experience localized pain, bruising, hematoma formation, bleeding, or, rarely, phlebitis at the puncture site. These complications are typically minor and self-limiting but should be acknowledged as part of the informed consent process. Ultrasonography, a key component of first-trimester screening through nuchal translucency assessment and second-trimester anatomic surveys, has been used safely for more than three decades. It is considered a very low-risk imaging modality for both mother and fetus. The "as low as reasonably achievable" (ALARA) principle guides practice, ensuring that ultrasound exposure is while still achieving minimized objectives.[16] Although no direct harmful effects have been demonstrated at standard diagnostic levels, adherence to ALARA reinforces the importance of maintaining appropriate technique and avoiding unnecessary, prolonged, or high-intensity ultrasound

Cell-free DNA (cfDNA) testing, despite being the most sensitive and specific screening method for common aneuploidies, is not infallible. False-negative and false-positive results can occur, though they are relatively rare. Factors such as low fetal fraction, confined placental mosaicism, maternal chromosomal abnormalities, or technical limitations compromise test accuracy. Serum analyte screening modalities—including combined first-trimester screening and second-trimester triple, quad, or penta screens—carry a higher false-positive rate, typically around 5%.[3] False-positive results may cause emotional significant distress, anxiety, psychological burden for expectant parents. For this reason, pretest counseling must explicitly address the possibility of false results, as well as the necessity of confirmatory diagnostic procedures following any positive screen. A unique challenge associated with cfDNA testing is the potential for incidental findings unrelated to fetal aneuploidy. Because cfDNA is derived from both placental and maternal sources, abnormal results may sometimes reflect maternal conditions rather than fetal abnormalities. These include maternal sex chromosome aneuploidy, benign or pathological mosaicism, or-rarely-undiagnosed maternal malignancy affecting cfDNA release patterns.[3] While such findings can have important clinical implications, they may also cause unexpected anxiety and require follow-up outside the traditional scope of prenatal care. Patients should therefore be informed during pretest counseling that cfDNA screening may reveal incidental maternal findings.

Screening accuracy differs between singleton and multiple gestations. For singleton pregnancies, serum analyte and cfDNA screening perform well within known detection and false-positive rates. However, in twins, serum-based aneuploidy screening is less accurate because analyte levels reflect contributions from more than one fetus. Interpretation becomes more uncertain, making the detection of aneuploidy more challenging. Although first-trimester combined screening using NT measurements and serum markers, as well as second-trimester quad screening, are available in twin pregnancies, their predictive performance is reduced compared to singletons.[3] cfDNA testing can also be used in twin gestations, but the results must be interpreted with caution: while cfDNA can indicate whether a pregnancy is high-risk for aneuploidy, it cannot identify which twin is affected.[17] Data for higher-order multiples (triplets, quadruplets) remain limited, and no screening method currently provides consistently reliable results for these pregnancies. Carrier screening also carries limitations that may be perceived as complications if not properly discussed beforehand. While expanded carrier screening panels assess a wide range of genetic conditions, they cannot identify all pathogenic variants associated with any given disorder. Many individuals may have rare or population-specific variants not included in standard panels. Consequently, even a negative carrier screening result does not eliminate the possibility of being a carrier; a residual risk always remains.[4] Understanding this concept is essential to avoid misinterpretation of results and to guide appropriate genetic counseling. In sum, although prenatal genetic screening is considered safe and effective, its limitations and potential complications from procedural risks and false-positive results to interpretive challenges in multiple gestations and residual risks in carrier screening—must be clearly Comprehensive, communicated. empathetic counseling empowers patients to make informed choices and supports improved clinical outcomes [17].

Patient Safety and Education

Patient safety and education constitute foundational components of high-quality prenatal genetic screening, ensuring that individuals and families are fully informed, supported, and empowered throughout the testing process. Central to this approach is comprehensive pretest counseling, during which patients should receive clear explanations about the goals, capabilities, and limitations of available screening options. This includes a detailed discussion of how screening differs from diagnostic testing—a distinction that is vital for patient understanding. Screening tests estimate risk but cannot confirm or exclude a genetic condition. Therefore, any positive or high-risk result must be followed by diagnostic testing before making irreversible decisions about pregnancy management. Diagnostic procedures such as chorionic villus sampling and amniocentesis provide definitive information and must be offered promptly when a screening result indicates elevated risk. Patients should also understand that a negative or low-risk screening result does not guarantee the absence of fetal abnormality. All screening tests carry some degree of residual risk, which may be influenced by factors such as fetal fraction, gestational age, laboratory methodology, and individual biological variability. As part of a balanced educational approach, counseling must communicate key performance metricsincluding test sensitivity, specificity, false-positive rates, and positive predictive value—because these parameters shape how results should be interpreted in a real-world clinical context. Understanding these concepts empowers patients to make evidenceinformed decisions and reduces the likelihood of misinterpretation or unwarranted anxiety.

Another important aspect of patient safety involves addressing ethical considerations and ensuring informed consent. Many patients express concerns about the personal and societal implications of genetic testing, including how their results may affect employment, insurance coverage, or discrimination. It is therefore essential for clinicians to educate patients about the protections afforded under the Genetic Information Nondiscrimination Act (GINA) of 2008, which prohibits health insurance companies and employers from discriminating on the basis of genetic information. Clarifying the scope and limitations of GINA helps alleviate patient fears and encourages more open participation in genetic screening. Posttest counseling is equally important for maintaining patient safety. When results are returned—whether they are high-risk, low-risk, or inconclusive—providers must interpret them in a personalized clinical context and explain their implications clearly. High-risk results should prompt referral for diagnostic testing, while inconclusive or "no call" results require careful counseling regarding the possibility of underlying chromosomal abnormalities and the need for repeat testing or diagnostic confirmation. Even when results appear reassuring, clinicians must remain attentive to patient concerns and provide ongoing support, particularly when ultrasound findings or family history create additional layers of complexity. Ultimately, patient safety in prenatal genetic screening depends on a structured, compassionate, and evidence-based educational framework. By ensuring that patients understand the capabilities and limitations of screening technologies, the meaning of their results, and the protections available to them, healthcare providers can promote informed decision-making, reduce unnecessary anxiety, and support optimal pregnancy care outcomes [17][18].

Clinical Significance:

The clinical significance of prenatal genetic screening lies in its profound impact on perinatal care, parental decision-making, and long-term health outcomes for both mother and child. Identifying fetal anomalies and genetic conditions early in pregnancy provides a critical window for comprehensive assessment, proactive planning, and tailored clinical management. Early recognition of chromosomal abnormalities, structural malformations, or inherited disorders enables healthcare providers to coordinate specialized care long before delivery. This may include referral to maternal-fetal medicine specialists. counselors, and relevant pediatric subspecialists who can provide anticipatory guidance and outline evidence-based management pathways. For conditions associated with anticipated medical complexity, early detection also facilitates arranging delivery at tertiary care centers equipped with neonatal intensive care units (NICUs), advanced diagnostic technologies, and multidisciplinary teams capable of providing immediate, specialized care for the newborn.[19] Beyond logistical planning, early diagnosis offers meaningful benefits for families. Prenatal identification of genetic disorders provides parents with time to emotionally process the diagnosis, seek psychosocial support, and prepare for the potential long-term developmental, medical, and social needs of their child. Families may use this period to engage with counseling services, connect with patient advocacy organizations, and consider available educational and community resources. For some, this preparatory phase significantly enhances coping and strengthens family resilience as they enter parenthood with a clearer understanding of the challenges ahead. Another important aspect of clinical significance relates to reproductive autonomy. When a serious genetic or structural abnormality is diagnosed early, families gain access to a full range of reproductive options, including the possibility of pregnancy continuation with specialized support or pregnancy termination, depending on personal, ethical, and cultural beliefs as well as local legal frameworks.[19] Early detection ensures that decisions are made within a timeframe that maximizes available choices and allows families to act in alignment with their values. In some cases, prenatal diagnosis may also influence intrauterine management strategies. Certain fetal conditions, such as congenital heart defects or neural tube defects, may qualify for specialized fetal interventions or necessitate adjustments in maternal medical management. Early identification thereby increases the likelihood of optimal perinatal outcomes by ensuring timely and coordinated care. Overall, the clinical significance of prenatal genetic screening extends far beyond risk estimation. It empowers families with knowledge, enhances the precision of perinatal care, improves neonatal outcomes, and supports informed, patient-centered decision-making throughout pregnancy [19].

Conclusion:

In conclusion, the optimization of prenatal genetic screening is fundamentally dependent on a robust, interdisciplinary, and patient-centered framework. The advancement of technologies, particularly cellfree DNA testing, has significantly enhanced our ability to detect common aneuploidies, but these tools must be integrated thoughtfully into clinical practice. The ultimate goal extends beyond mere risk detection empowering prospective parents comprehensive, understandable information that allows them to make decisions aligned with their personal values and reproductive goals. This process is anchored in thorough pre-test and post-test counseling, where the distinctions between screening and diagnostic testing, as well as the potential for false positives and incidental findings, are clearly communicated. The clinical significance of this approach is profound, enabling early diagnosis, facilitating coordinated care with maternal-fetal medicine specialists, and allowing families to prepare for a range of outcomes. By ensuring that all healthcare team members-from clinicians and genetic counselors to sonographers and laboratory staff-collaborate effectively, we can safeguard patient safety, uphold ethical standards, and provide the supportive environment necessary for families to navigate their prenatal journey with confidence and clarity.

References:

- 1. Cuckle H, Maymon R. Development of prenatal screening--A historical overview. Semin Perinatol. 2016 Feb;40(1):12-22.
- 2. Practice Bulletin No. 162: Prenatal Diagnostic Testing for Genetic Disorders. Obstet Gynecol. 2016 May;127(5):e108-e122.
- 3. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet Gynecol. 2020 Oct;136(4):e48-e69.
- 4. Committee Opinion No. 690: Carrier Screening in the Age of Genomic Medicine. Obstet Gynecol. 2017 Mar;129(3):e35-e40.
- 5. Committee Opinion No. 691: Carrier Screening for Genetic Conditions. Obstet Gynecol. 2017 Mar;129(3):e41-e55.
- 6. Abuhamad A. Technical aspects of nuchal translucency measurement. Semin Perinatol. 2005 Dec;29(6):376-9.
- 7. Hixson L, Goel S, Schuber P, Faltas V, Lee J, Narayakkadan A, Leung H, Osborne J. An Overview on Prenatal Screening for Chromosomal Aberrations. J Lab Autom. 2015 Oct;20(5):562-73.
- Malone FD, Canick JA, Ball RH, Nyberg DA, Comstock CH, Bukowski R, Berkowitz RL, Gross SJ, Dugoff L, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, Dukes K, Bianchi DW, Rudnicka AR, Hackshaw AK, Lambert-Messerlian G, Wald NJ, D'Alton ME., First- and Second-Trimester Evaluation of Risk (FASTER)

- Research Consortium. First-trimester or secondtrimester screening, or both, for Down's syndrome. N Engl J Med. 2005 10;353(19):2001-11.
- 9. Carlson LM, Vora NL. Prenatal Diagnosis: Screening and Diagnostic Tools. Obstet Gynecol Clin North Am. 2017 Jun;44(2):245-256.
- 10. Fu XL, Hou W, Zhang ML, Xie XX, Meng Y, Zhou HH, Zhao QD, Hu JL, Mo GP, Lu YP. [Carrier screening and prenatal diagnosis analysis of high-risk cases in 3 044 preconception and early pregnancy couples]. Zhonghua Fu Chan Ke Za Zhi. 2025 Mar 25;60(3):161-170.
- 11. Gregg AR, Skotko BG, Benkendorf JL, Monaghan KG, Bajaj K, Best RG, Klugman S, Watson MS. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016 Oct;18(10):1056-65.
- 12. Temming LA, Macones GA. What is prenatal screening and why to do it? Semin Perinatol. 2016 Feb;40(1):3-11.
- 13. Post AL, Mottola AT, Kuller JA. What's New in Prenatal Genetics? A Review of Current Recommendations and Guidelines. Obstet Gynecol Surv. 2017 Oct;72(10):610-617.
- 14. Lannoo L, Van Den Bogaert K, Belmans A, Brison N, Dehaspe L, De Langhe E, Vancoillie L, Parijs I, Vermeesch JR, Devriendt K, Van Calsteren K. Persistent Uninterpretable or Failed Prenatal Cell-Free DNA Screening Indicates a High-Risk Pregnancy and is Associated With Biological Factors Interfering With cfDNA-Analysis: A Prospective Cohort Study. Prenat Diagn. 2025 May;45(5):581-590.
- 15. Curnow KJ, Wilkins-Haug L, Ryan A, Kırkızlar E, Stosic M, Hall MP, Sigurjonsson S, Demko Z, Rabinowitz M, Gross SJ. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am J Obstet Gynecol. 2015 Jan;212(1):79.e1-9.
- 16. Varthaliti A, Fasoulakis Z, Lygizos V, Zolota V, Chatziioannou MI, Daskalaki MA, Daskalakis G, Antsaklis P. Safety of Obstetric Ultrasound: Mechanical and Thermal Indexes-A Systematic Review. J Clin Med. 2024 Nov 01;13(21)
- 17. Judah H, Gil MM, Syngelaki A, Galeva S, Jani J, Akolekar R, Nicolaides KH. Cell-free DNA testing of maternal blood in screening for trisomies in twin pregnancy: updated cohort study at 10-14 weeks and meta-analysis. Ultrasound Obstet Gynecol. 2021 Aug;58(2):178-189.
- 18. Committee Opinion No. 693: Counseling About Genetic Testing and Communication of Genetic Results. Obstet Gynecol. 2017 Test Apr;129(4):e96-e101.

19. Dukhovny S, Norton ME. What are the goals of prenatal genetic testing? Semin Perinatol. 2018 Aug;42(5):270-274

Saudi J. Med. Pub. Health Vol. 2 No. 2 (2025)