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Abstract  
Background: The management of acute hemodynamic instability, particularly in sepsis and shock, remains a high-stakes 

challenge characterized by time-sensitive interventions and dynamic physiological changes. Recent technological advances in 

smart infusion pumps, continuous physiological monitoring, and rapid biomarker analysis present an unprecedented 

opportunity for integration. 

Aim: This narrative review aims to synthesize the current evidence and conceptual frameworks for a Hemodynamic 

Intelligence System (HIS)—a closed-loop integration of bedside monitors, biomarker analysis, and smart infusion pumps—to 

enable autonomous, physiologically adaptive drug delivery for conditions like sepsis and shock. 

Methods: A comprehensive literature search was conducted across PubMed, IEEE Xplore, CINAHL, and Web of Science for 

English-language articles published between 2010 and 2024.  

Results: The convergence of these technologies is technically feasible and shows promise in early-stage clinical studies for 

improving protocol adherence and reducing time-to-therapeutic goals. Laboratory medicine must evolve to provide analyzers 

with sufficient rapidity and reliability for real-time feedback. Nursing faces a paradigm shift towards system oversight and 

alarm management, requiring new competencies in data interpretation and human-machine interaction. 

Conclusion: The Hemodynamic Intelligence System represents a transformative vision for critical care. Its successful 

implementation hinges not on technological capability alone, but on rigorous interdisciplinary collaboration to address 

challenges in system safety, clinical workflow integration, and the preservation of the nurse's indispensable role as clinical 

contextualizer. Future research must prioritize robust clinical outcome trials and the development of shared governance 

models for autonomous systems. 

Keywords: Closed-Loop System, Smart Infusion Pump, Hemodynamic Monitoring, Point-of-Care Testing, Sepsis 

Management.. 

_____________________________________________________________________________________________________

Introduction 

The management of hemodynamic 

instability in sepsis, septic shock, and other 

distributive shock states represents a quintessential 

challenge in modern critical care. Despite decades of 

research and protocolization, mortality remains 

stubbornly high, often attributable to delays in 

recognition, inadequate initial resuscitation, or failure 

to dynamically adapt therapy to a patient’s evolving 

physiological state (Evans et al., 2021; Alhazzani et 

al., 2021). Traditional management operates on a 

discontinuous loop: clinicians interpret snapshots of 

data—vital signs, laboratory values, clinical 

assessment—and manually adjust interventions, such 

as fluid boluses or vasopressor infusions. This 

process is inherently limited by human cognitive 

load, workflow interruptions, and the episodic nature 

of data acquisition (Chromik et al., 2020). The lag 

between physiological change, data availability, 

clinical decision, and manual pump adjustment can 

be consequential, particularly in the fragile "golden 

hour" of sepsis management (Ray et al., 2021). 
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Concurrently, three technological streams 

have matured significantly: smart infusion 

pumps with dose-error reduction software and 

network connectivity; advanced hemodynamic 

monitors capable of continuous, high-fidelity 

waveform analysis and derived parameters; and rapid 

turnaround biomarker analysis via point-of-care 

(POC) platforms or optimized central laboratory 

pathways (Marwitz et al., 2020). Historically, these 

systems have operated in silos, generating data that 

must be mentally integrated by the clinician. The next 

logical, and arguably necessary, step is their 

intentional integration into a Hemodynamic 

Intelligence System (HIS)—a closed-loop control 

system where real-time physiological and 

biochemical data automatically modulate the delivery 

of life-supporting medications (Rinehart et al., 2019). 

Figure 1 presents a schematic overview of the 

Hemodynamic Intelligence System (HIS), illustrating 

the closed-loop integration between bedside 

hemodynamic monitors, rapid biomarker analysis, 

central control algorithms, and smart infusion pumps. 

 
Figure 1. Core Components of the Hemodynamic 

Intelligence System (HIS) 

This review investigates the convergence of 

these technologies to create dynamic, automated 

treatment protocols. It will critically examine the 

biomedical engineering principles enabling 

"intelligent" pumps, the evolving role of the 

laboratory in providing real-time biochemical 

feedback, and the transformative—yet complex—

impact on nursing practice, which must shift from 

manual titrator to system supervisor and clinical 

contextualizer. The ultimate aim is to move beyond 

isolated "smart" devices to propose and evaluate the 

framework for a fully integrated, physiologically 

adaptive drug delivery ecosystem. 

The Biomedical Engineering Core – Designing the 

Intelligent Pump and Algorithmic Heart 
The engineering foundation of a 

Hemodynamic Intelligence System rests on two 

interdependent pillars: the actuation device (the smart 

infusion pump) and the control algorithm that dictates 

its behavior based on input data. Modern smart 

pumps are technologically poised for this role. They 

are increasingly equipped with bidirectional 

communication via the IEEE 11073 SDC (Service-

Oriented Device Connectivity) standard or other 

interoperability frameworks, allowing them to receive 

external input and transmit status logs (Yilmaz et al., 

2023). The actuation mechanism itself must be 

precise and responsive over a wide range of flow 

rates, especially for potent vasoactive drugs where 

minute changes in dose can have significant 

hemodynamic effects (DeSimone et al., 2023). 

The true intelligence, however, resides in the 

control algorithm. This software interprets a 

continuous stream of hemodynamic data. Inputs can 

range from basic parameters like non-invasive blood 

pressure (NIBP) and heart rate to sophisticated 

analyses of arterial pressure waveform morphology. 

Parameters such as stroke volume variation (SVV), 

pulse pressure variation (PPV), and the dynamic 

elastance of the arterial system provide nuanced 

insights into fluid responsiveness and vascular tone 

that static blood pressure readings cannot (Pinsky & 

Payen, 2005). The algorithm’s first task is signal 

processing—filtering out artifacts from patient 

movement, suctioning, or other nursing activities to 

ensure decisions are based on valid physiological 

data (Zhou et al., 2018). This remains a significant 

challenge, as misinterpreting artifact for signal could 

lead to dangerous autonomous adjustments. 

Control strategies vary in complexity. 

Simple threshold-based algorithms (if MAP < 65 

mmHg for 2 minutes, increase norepinephrine rate by 

0.02 mcg/kg/min) are easier to validate but lack 

sophistication. More advanced models employ 

proportional-integral-derivative (PID) controllers, 

fuzzy logic, or even machine learning models trained 

on vast datasets of hemodynamic responses (Rinehart 

et al., 2021). A PID controller, for instance, would 

adjust the infusion rate not just based on the current 

error (difference from target MAP), but also on how 

long the error has persisted (integral) and how 

quickly it is changing (derivative), leading to 

smoother and more stable control (Wingert et al., 

2021). Machine learning approaches promise to 

personalize therapy by predicting individual patient 

responsiveness, but they raise concerns regarding 

"black box" decision-making and the need for 

extensive, diverse training datasets to avoid bias 

(Saraswat et al., 2022).  

Early clinical implementations have focused 

on closed-loop vasopressor control. Proof-of-concept 

and small-scale randomized trials have demonstrated 

that such systems can maintain mean arterial pressure 

(MAP) within a target range more consistently than 

manual titration, reduce the duration of hypotension, 

and decrease clinician workload (Desebbe et al., 

2022; Patel et al., 2022). However, these studies have 

largely used blood pressure as the sole input variable. 

The next evolution is a multi-input, multi-output 

system. In such a system, the algorithm must 

reconcile potentially conflicting goals: for example, 

using fluids to address low stroke volume (preload) 

while using vasopressors to address low systemic 

vascular resistance (afterload), all while monitoring 

for signs of fluid overload or inadequate tissue 



The Hemodynamic Intelligence System: A Review of Closed-Loop Integration... 
_____________________________________________________________________________________________________________ 

________________________________________________ 

Saudi J. Med. Pub. Health Vol. 1 No. 2 (2024) 

 

1836 

perfusion (Pinsky et al., 2022). This requires the 

integration of the second critical data stream: 

biochemical feedback from the laboratory (Table 1). 

Table 1: Evolution of Smart Infusion Pumps Towards Closed-Loop Integration 

Generation Key Capabilities Limitations Integration Level 

1st Gen: Basic 

Pumps 

Programmable flow rates, basic 

alarms. 

No safety software, standalone 

operation. 

None. Siloed 

device. 

2nd Gen: "Smart" 

Pumps 

Dose Error Reduction Software 

(DERS), drug libraries, 

upper/lower hard limits. 

Alarms are reactive; decisions 

remain manual. Interoperability 

limited. 

Low. Data may be 

logged but not 

acted upon. 

3rd Gen: Networked 

Pumps 

Bidirectional EMR 

communication, auto-

documentation, updated 

libraries. 

Can receive orders but 

not act autonomously on 

physiological data. 

Medium. 

Integrated into 

workflow but not 

control loop. 

4th Gen: 

Physiologically 

Responsive Pumps 

(HIS Component) 

Receives real-time data from 

monitors/labs, hosts or executes 

control algorithms, makes 

micro-adjustments within 

clinician-set bounds. 

Requires flawless 

interoperability, robust 

algorithms, and new safety 

paradigms for clinical 

oversight. 

High. Core 

actuator in a 

closed-loop 

biological control 

system. 

The Biochemical Feedback Loop – The 

Laboratory’s Role in Real-Time Physiology 
A hemodynamic system responding solely 

to blood pressure and waveform analysis is akin to 

driving a car by only looking at the speedometer, 

ignoring the fuel gauge, engine temperature, and 

warning lights. Biochemical markers provide the 

essential "fuel gauge and diagnostic readout" of 

cellular metabolism and the host response. For a HIS 

to be physiologically comprehensive, it must 

incorporate rapid, serial biomarker analysis as a 

feedback trigger. This demands a paradigm shift in 

laboratory medicine from a batch-processing, 

centralised model to one supporting near-continuous, 

actionable data streams (Kost et al., 2019). 

The relevant biomarkers fall into categories 

that inform different aspects of the shock 

state. Perfusion markers, like lactate, remain a 

cornerstone of sepsis management. Serial lactate 

measurements, with a focus on clearance, are 

strongly linked to outcomes (Jansen et al., 2010). A 

HIS algorithm could be programmed to trigger a fluid 

challenge or reassess cardiac output if lactate fails to 

decrease despite normalized blood 

pressure. Inflammatory and diagnostic markers, such 

as procalcitonin (PCT), could guide algorithm 

aggressiveness or even signal a potential de-

escalation of supportive therapy as the infection 

resolves (Heilmann et al., 2021). Oxygenation 

markers, like central venous oxygen saturation 

(ScvO2) or the newer POC-measured venous-arterial 

CO2 gap, provide a direct measure of the balance 

between oxygen delivery and consumption (Mallat et 

al., 2020). A falling ScvO2 could prompt the 

algorithm to increase oxygen delivery (via fluids, 

inotropes, or transfusion) before a drop in blood 

pressure occurs. 

The pivotal constraint is turnaround time 

(TAT). A feedback loop with a latency of 60-90 

minutes (common for central lab batches) is useless 

for real-time control. Therefore, the laboratory’s role 

evolves in two directions. First, the deployment 

of POC testing at or very near the bedside becomes 

critical. Modern POC devices for lactate, blood gases, 

and electrolytes can provide results in 1-2 minutes, 

fitting within the control cycle of a HIS (Rajsic et al., 

2021). Second, the central laboratory must re-

engineer pathways for "stat" biomarkers, potentially 

using continuous flow analyzers or dedicated, rapid-

response instruments for ICU samples, with seamless 

data integration into the patient’s monitoring network 

(Khatab & Yousef, 2021). 

This shift presents significant challenges. 

POC testing requires rigorous quality control, 

operator competency, and data management to ensure 

results are accurately fed into the algorithm (Dubin et 

al., 2022). Result reliability is non-negotiable; a 

falsely elevated lactate from a poorly sampled 

capillary blood gas could trigger an inappropriate and 

potentially harmful fluid bolus (Boulain et al., 2016). 

Furthermore, the financial and operational model of 

the laboratory changes, moving from high-volume 

batch efficiency to one supporting decentralized, 

immediate testing. The laboratory professional’s role 

expands to become a consultant on test selection 

frequency, analytical performance specifications for 

closed-loop control, and the interpretation of trends 

within the context of the algorithm’s behavior 

(Subramanian et al., 2020). The laboratory is no 

longer a passive data provider but an active steward 

of the biochemical feedback pipeline that drives 

autonomous therapy. 

The Human in the Loop – Nursing at the Interface 

of Automation and Clinical Context 
The introduction of a Hemodynamic 

Intelligence System precipitates the most profound 

change at the bedside: the redefinition of the nurse’s 

role. The romanticized notion of the nurse "titrating 

drips to keep the patient alive" is replaced by a more 

complex, cognitively demanding role of system 

overseer, interpreter, and ultimate safety guardian. 
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This transition is fraught with challenges related to 

trust, competency, and alarm management. 

A primary concern is alarm fatigue. Current 

ICUs are cacophonous environments. A HIS, if 

poorly designed, could generate a cascade of 

algorithmic alerts: "Unable to reach MAP target," 

"Biomarker feedback conflicting with hemodynamic 

data," "Pump adjustment limit reached," "Signal 

artifact detected" (Storm & Chen, 2020). Nurses must 

be trained to triage these alarms, differentiating 

between informational status updates, system errors, 

and genuine patient crises that require human 

override. The design principle must be "quiet 

intelligence"—the system should operate smoothly 

within defined parameters, alerting the nurse 

primarily when it encounters an unhandled scenario 

or requests clinical input (Chromik et al., 2020). 

This leads to the concept of human-in-the-

loop (HITL) versus human-on-the-loop 

(HOTL) control. In a HITL model, the algorithm 

proposes an action (e.g., "Increase norepinephrine by 

0.05 mcg/kg/min") and the nurse must approve it 

(Bhangu et al., 2022). This preserves a checkpoint 

but may negate the speed benefit. In a HOTL model, 

the system acts autonomously within a broad, pre-

authorized therapeutic corridor (maintain MAP 65-75 

mmHg using norepinephrine 0.01-0.5 mcg/kg/min), 

with the nurse monitoring its performance (Fang et 

al., 2018). Most proposals favor a HOTL model for 

routine titration, with clear, immediate override 

capabilities. This requires immense trust, built 

through transparency (the ability for the nurse to see 

the algorithm’s "reasoning") and proven reliability 

(Patel et al., 2022). 

The nurse’s irreplaceable value becomes the 

provision of clinical context. An algorithm sees data 

streams; the nurse sees the patient. The nurse 

integrates non-quantifiable data: Is the patient restless 

or in pain (which elevates blood pressure)? Are they 

receiving a bath or being turned (which may cause 

transient hypotension)? Have family members just 

delivered distressing news? Furthermore, the nurse 

performs holistic assessment—skin mottling, 

capillary refill, mentation—that may contradict 

seemingly adequate digital readings (Ray et al., 

2021). A key nursing competency will be algorithmic 

dissent: knowing when to override the system based 

on a broader clinical picture. This requires deep 

understanding of both pathophysiology and the 

algorithm’s limitations. 

New nursing competencies must be 

developed, including basic data science literacy, 

understanding of control system principles, and 

advanced troubleshooting of interconnected devices 

(Kokol et al., 2022). Educational programs and 

simulation training must shift from teaching manual 

titration patterns to fostering skills in monitoring 

automated systems, managing hybrid (part-

automated, part-manual) environments, and 

intervening when automation fails or is inappropriate. 

The nurse transforms from a manual operator to a 

master clinical systems manager (Table 2). Figure 2 

illustrates the operational pathway of the 

Hemodynamic Intelligence System (HIS) across the 

continuum of critical care. 

Table 2: Interdisciplinary Challenges and Requirements for HIS Implementation 

Domain Key Challenges Required Advances/Competencies Safety & Governance 

Considerations 

Biomedical 

Engineering 

Signal artifact 

management; Multi-input 

algorithm validation; 

Interoperability (plug-and-

play); Cybersecurity. 

Development of robust, explainable 

AI/control algorithms; Standardized 

data exchange protocols (e.g., IEEE 

11073 SDC). 

Rigorous pre-clinical 

simulation testing; Fail-

safe mechanisms (e.g., 

fallback to basal rate); 

Independent algorithm 

auditing. 

Laboratory 

Medicine 

Providing rapid, reliable 

serial biomarker data; 

POC device management 

& data integration; 

Defining analytical 

performance for closed-

loop use. 

Deployment of POC networks; 

Rapid central lab pathways; New 

role as "feedback loop quality 

officer." 

Strict POC quality control 

protocols; Redundancy for 

critical tests (e.g., lactate); 

Clear flagging of 

potentially erroneous 

results. 

Nursing 

Practice 

Alarm fatigue from 

complex systems; 

Transition to oversight 

role; Maintaining 

situational awareness; 

Override decision-making. 

Training in system oversight, data 

interpretation, and "algorithmic 

thinking"; Development of human-

factors engineering principles in UI 

design. 

Clear protocols for 

override and escalation; 

Mandatory "system time-

outs" for holistic 

assessment; Shared 

governance over algorithm 

parameters. 

Clinical 

Medicine & 

Ethics 

Defining therapeutic 

corridors & escalation 

protocols; Liability & 

Development of consensus 

guidelines for closed-loop use; New 

models for credentialing & 

Ethical frameworks for 

autonomous care; 

Transparency in algorithm 
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accountability for 

autonomous actions; 

Equity in algorithm 

performance. 

privileging of "system use." logic; Regular bias audits 

of AI components. 

 
Figure 2. Clinical Workflow of the Hemodynamic 

Intelligence System in Critical Care 

Synthesis, Challenges, and the Path Forward 
The vision of a Hemodynamic Intelligence 

System is no longer science fiction. Its individual 

components exist and have demonstrated early 

promise in controlled settings. The synthesis of these 

components into a reliable, safe, and clinically 

effective ecosystem, however, presents formidable 

interdisciplinary hurdles that extend far beyond pure 

engineering. 

A primary challenge is interoperability. The 

"plug-and-play" integration of devices from different 

manufacturers remains an elusive goal, despite 

standards like IEEE 11073. Data formats, 

communication protocols, and network security 

models are often proprietary, creating a Tower of 

Babel at the bedside (Yilmaz et al., 2023). A HIS 

requires a dedicated, secure, high-fidelity data bus 

that can aggregate, time-synchronize, and pre-process 

signals from monitors, pumps, and laboratory servers 

before feeding them to the control algorithm. 

Cybersecurity is a paramount concern, as a malicious 

actor gaining control of a closed-loop vasopressor 

system represents a catastrophic threat (Lieneck et 

al., 2023). 

Clinical validation and regulation pose 

another significant hurdle. Regulatory bodies like the 

FDA are navigating how to classify and evaluate such 

systems—as a combination of device, software, and 

potentially even an autonomous therapeutic agent 

(Intelligence & Learning, 2021). Clinical trials must 

move beyond surrogate endpoints like time-in-target-

range to demonstrate improvements in patient-

centered outcomes such as mortality, ICU length of 

stay, or organ failure-free days. These trials must be 

large, pragmatic, and include diverse patient 

populations to ensure algorithms do not perpetuate or 

exacerbate healthcare disparities (Obermeyer et al., 

2019). The "black box" nature of some advanced AI 

algorithms conflicts with the medical and ethical 

need for explainability: clinicians must 

understand why the system made a particular 

adjustment to trust it (Ghassemi et al., 2021). 

Finally, the economic and workflow 

implications must be addressed. The significant 

upfront capital cost for next-generation pumps, POC 

networks, and integration middleware must be 

justified by demonstrating downstream savings from 

reduced complications, shorter ventilator days, or 

decreased nursing cognitive burden (although the 

latter is difficult to quantify). Workflow redesign is 

essential; simply overlaying a HIS on a legacy 

nursing workflow will lead to failure. Clinical 

environments must be co-designed with end-users—

nurses, physicians, pharmacists—to ensure the 

system augments rather than disrupts care (Martinez-

Millana et al., 2019). 

Conclusion 
The Hemodynamic Intelligence System 

represents a paradigm shift in critical care, from 

intermittent, clinician-driven intervention to 

continuous, physiology-driven optimization. This 

narrative review has articulated the convergent paths 

of biomedical engineering, laboratory medicine, and 

nursing practice that make this vision attainable. The 

intelligent pump serves as the hand, the multi-

parameter algorithm as the brain, and rapid biomarker 

feedback as the sensory nervous system. Yet, the 

nurse remains the indispensable heart of the 

operation—the source of clinical wisdom, ethical 

oversight, and compassionate context. 

The path forward is not merely technical. It 

demands unprecedented collaboration. Engineers 

must work alongside intensivists to build clinically 

intuitive algorithms. Laboratory scientists must 

partner with informaticians to create resilient real-

time data streams. Nurses must be integral to the 

design process, ensuring the human-machine 

interface fosters vigilance rather than complacency. 

Ethicists and hospital administrators must 

collaboratively develop governance models for 

shared responsibility between humans and 

autonomous systems. 

Future research must prioritize robust 

multicenter clinical trials, the development of open-

source algorithm platforms for validation, and 

intensive study of the human factors surrounding 

autonomous system supervision. The goal is not to 

replace the clinician but to create a powerful 

partnership—a synergy where algorithmic precision 

and relentless consistency are combined with human 

intuition and holistic care. In doing so, the 

Hemodynamic Intelligence System holds the 

potential to finally close the persistent feedback loops 

in shock management, offering a more precise, 

responsive, and ultimately more humane standard of 

care for the most critically ill patients. 
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