



## The Hemodynamic Intelligence System: A Review of Closed-Loop Integration between Bedside Monitors, Biomarker Analysis, and Smart Infusion Pumps

Fahad Khalid Alotaibi <sup>(1)</sup>, Mohammed Aleqidi Alruwili <sup>(2)</sup>, Abdullah Maashi Harran Alruwili <sup>(3)</sup>, Menwer Ata Maashi Alruwili <sup>(3)</sup>, Zamil Ashwi Muhayris Alruwaili <sup>(3)</sup>, Nasser Mohammed Albaqami <sup>(3)</sup>, Rakan Ashwi Alruwaili <sup>(4)</sup>, Hussein Nasser Mansour Aldawsari <sup>(5)</sup>, Obaid Saad Aldwassary <sup>(6)</sup>, Mohammed Mubarak Al-Shuraidah <sup>(6)</sup>, Nader Awad R. Alotaibi <sup>(7)</sup>, Mesfer Zaid Hathal Alkhamis <sup>(8)</sup>, Eman Ali Mohammed Alrazqi <sup>(9)</sup>, Zahra Jaber Majrashi <sup>(9)</sup>

(1) Afif Hospital – Riyadh, Ministry of Health, Saudi Arabia,

(2) Al-Jawf Blood Bank Support, Ministry of Health, Saudi Arabia,

(3) Al-Jouf Blood Bank Support, Ministry of Health, Saudi Arabia,

(4) Shared Services Regional Laboratory in Al-Jawf, Ministry of Health, Saudi Arabia,

(5) Wadi Al-Dawasir Hospital, Ministry of Health, Saudi Arabia,

(6) Wadi Al-Dawasir General Hospital, Ministry of Health, Saudi Arabia,

(7) Al-Bijadyah General Hospital – Riyadh Third Health Cluster, Ministry of Health, Saudi Arabia,

(8) Al-Aflaj Hospital, Ministry of Health, Saudi Arabia,

(9) Imam Abdulrahman Al-Faisal Hospital – Riyadh, Ministry of Health, Saudi Arabia

### Abstract

**Background:** The management of acute hemodynamic instability, particularly in sepsis and shock, remains a high-stakes challenge characterized by time-sensitive interventions and dynamic physiological changes. Recent technological advances in smart infusion pumps, continuous physiological monitoring, and rapid biomarker analysis present an unprecedented opportunity for integration.

**Aim:** This narrative review aims to synthesize the current evidence and conceptual frameworks for a Hemodynamic Intelligence System (HIS)—a closed-loop integration of bedside monitors, biomarker analysis, and smart infusion pumps—to enable autonomous, physiologically adaptive drug delivery for conditions like sepsis and shock.

**Methods:** A comprehensive literature search was conducted across PubMed, IEEE Xplore, CINAHL, and Web of Science for English-language articles published between 2010 and 2024.

**Results:** The convergence of these technologies is technically feasible and shows promise in early-stage clinical studies for improving protocol adherence and reducing time-to-therapeutic goals. Laboratory medicine must evolve to provide analyzers with sufficient rapidity and reliability for real-time feedback. Nursing faces a paradigm shift towards system oversight and alarm management, requiring new competencies in data interpretation and human-machine interaction.

**Conclusion:** The Hemodynamic Intelligence System represents a transformative vision for critical care. Its successful implementation hinges not on technological capability alone, but on rigorous interdisciplinary collaboration to address challenges in system safety, clinical workflow integration, and the preservation of the nurse's indispensable role as clinical contextualizer. Future research must prioritize robust clinical outcome trials and the development of shared governance models for autonomous systems.

**Keywords:** Closed-Loop System, Smart Infusion Pump, Hemodynamic Monitoring, Point-of-Care Testing, Sepsis Management..

### Introduction

The management of hemodynamic instability in sepsis, septic shock, and other distributive shock states represents a quintessential challenge in modern critical care. Despite decades of research and protocolization, mortality remains stubbornly high, often attributable to delays in recognition, inadequate initial resuscitation, or failure to dynamically adapt therapy to a patient's evolving physiological state (Evans et al., 2021; Alhazzani et al., 2021). Traditional management operates on a

discontinuous loop: clinicians interpret snapshots of data—vital signs, laboratory values, clinical assessment—and manually adjust interventions, such as fluid boluses or vasopressor infusions. This process is inherently limited by human cognitive load, workflow interruptions, and the episodic nature of data acquisition (Chromik et al., 2020). The lag between physiological change, data availability, clinical decision, and manual pump adjustment can be consequential, particularly in the fragile "golden hour" of sepsis management (Ray et al., 2021).

Concurrently, three technological streams have matured significantly: smart infusion pumps with dose-error reduction software and network connectivity; advanced hemodynamic monitors capable of continuous, high-fidelity waveform analysis and derived parameters; and rapid turnaround biomarker analysis via point-of-care (POC) platforms or optimized central laboratory pathways (Marwitz et al., 2020). Historically, these systems have operated in silos, generating data that must be mentally integrated by the clinician. The next logical, and arguably necessary, step is their intentional integration into a Hemodynamic Intelligence System (HIS)—a closed-loop control system where real-time physiological and biochemical data automatically modulate the delivery of life-supporting medications (Rinehart et al., 2019). Figure 1 presents a schematic overview of the Hemodynamic Intelligence System (HIS), illustrating the closed-loop integration between bedside hemodynamic monitors, rapid biomarker analysis, central control algorithms, and smart infusion pumps.



**Figure 1. Core Components of the Hemodynamic Intelligence System (HIS)**

This review investigates the convergence of these technologies to create dynamic, automated treatment protocols. It will critically examine the biomedical engineering principles enabling "intelligent" pumps, the evolving role of the laboratory in providing real-time biochemical feedback, and the transformative—yet complex—impact on nursing practice, which must shift from manual titrator to system supervisor and clinical contextualizer. The ultimate aim is to move beyond isolated "smart" devices to propose and evaluate the framework for a fully integrated, physiologically adaptive drug delivery ecosystem.

#### **The Biomedical Engineering Core – Designing the Intelligent Pump and Algorithmic Heart**

The engineering foundation of a Hemodynamic Intelligence System rests on two interdependent pillars: the actuation device (the smart infusion pump) and the control algorithm that dictates its behavior based on input data. Modern smart pumps are technologically poised for this role. They are increasingly equipped with bidirectional communication via the IEEE 11073 SDC (Service-Oriented Device Connectivity) standard or other interoperability frameworks, allowing them to receive

external input and transmit status logs (Yilmaz et al., 2023). The actuation mechanism itself must be precise and responsive over a wide range of flow rates, especially for potent vasoactive drugs where minute changes in dose can have significant hemodynamic effects (DeSimone et al., 2023).

The true intelligence, however, resides in the control algorithm. This software interprets a continuous stream of hemodynamic data. Inputs can range from basic parameters like non-invasive blood pressure (NIBP) and heart rate to sophisticated analyses of arterial pressure waveform morphology. Parameters such as stroke volume variation (SVV), pulse pressure variation (PPV), and the dynamic elastance of the arterial system provide nuanced insights into fluid responsiveness and vascular tone that static blood pressure readings cannot (Pinsky & Payen, 2005). The algorithm's first task is signal processing—filtering out artifacts from patient movement, suctioning, or other nursing activities to ensure decisions are based on valid physiological data (Zhou et al., 2018). This remains a significant challenge, as misinterpreting artifact for signal could lead to dangerous autonomous adjustments.

Control strategies vary in complexity. Simple threshold-based algorithms (if  $MAP < 65$  mmHg for 2 minutes, increase norepinephrine rate by 0.02 mcg/kg/min) are easier to validate but lack sophistication. More advanced models employ proportional-integral-derivative (PID) controllers, fuzzy logic, or even machine learning models trained on vast datasets of hemodynamic responses (Rinehart et al., 2021). A PID controller, for instance, would adjust the infusion rate not just based on the current error (difference from target MAP), but also on how long the error has persisted (integral) and how quickly it is changing (derivative), leading to smoother and more stable control (Wingert et al., 2021). Machine learning approaches promise to personalize therapy by predicting individual patient responsiveness, but they raise concerns regarding "black box" decision-making and the need for extensive, diverse training datasets to avoid bias (Saraswat et al., 2022).

Early clinical implementations have focused on closed-loop vasopressor control. Proof-of-concept and small-scale randomized trials have demonstrated that such systems can maintain mean arterial pressure (MAP) within a target range more consistently than manual titration, reduce the duration of hypotension, and decrease clinician workload (Desebbe et al., 2022; Patel et al., 2022). However, these studies have largely used blood pressure as the sole input variable. The next evolution is a multi-input, multi-output system. In such a system, the algorithm must reconcile potentially conflicting goals: for example, using fluids to address low stroke volume (preload) while using vasopressors to address low systemic vascular resistance (afterload), all while monitoring for signs of fluid overload or inadequate tissue

perfusion (Pinsky et al., 2022). This requires the integration of the second critical data stream:

biochemical feedback from the laboratory (Table 1).

**Table 1: Evolution of Smart Infusion Pumps Towards Closed-Loop Integration**

| Generation                                                       | Key Capabilities                                                                                                                       | Limitations                                                                                             | Integration Level                                               |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <b>1st Gen: Basic Pumps</b>                                      | Programmable flow rates, basic alarms.                                                                                                 | No safety software, standalone operation.                                                               | None. Siloed device.                                            |
| <b>2nd Gen: "Smart" Pumps</b>                                    | Dose Error Reduction Software (DERS), drug libraries, upper/lower hard limits.                                                         | Alarms are reactive; decisions remain manual. Interoperability limited.                                 | Low. Data may be logged but not acted upon.                     |
| <b>3rd Gen: Networked Pumps</b>                                  | Bidirectional communication, documentation, libraries, auto-updated                                                                    | Can receive orders but not act autonomously on physiological data.                                      | Medium. Integrated into workflow but not control loop.          |
| <b>4th Gen: Physiologically Responsive Pumps (HIS Component)</b> | Receives real-time data from monitors/labs, hosts or executes control algorithms, makes micro-adjustments within clinician-set bounds. | Requires flawless interoperability, robust algorithms, and new safety paradigms for clinical oversight. | High. Core actuator in a closed-loop biological control system. |

#### **The Biochemical Feedback Loop – The Laboratory's Role in Real-Time Physiology**

A hemodynamic system responding solely to blood pressure and waveform analysis is akin to driving a car by only looking at the speedometer, ignoring the fuel gauge, engine temperature, and warning lights. Biochemical markers provide the essential "fuel gauge and diagnostic readout" of cellular metabolism and the host response. For a HIS to be physiologically comprehensive, it must incorporate rapid, serial biomarker analysis as a feedback trigger. This demands a paradigm shift in laboratory medicine from a batch-processing, centralised model to one supporting near-continuous, actionable data streams (Kost et al., 2019).

The relevant biomarkers fall into categories that inform different aspects of the shock state. Perfusion markers, like lactate, remain a cornerstone of sepsis management. Serial lactate measurements, with a focus on clearance, are strongly linked to outcomes (Jansen et al., 2010). A HIS algorithm could be programmed to trigger a fluid challenge or reassess cardiac output if lactate fails to decrease despite normalized blood pressure. Inflammatory and diagnostic markers, such as procalcitonin (PCT), could guide algorithm aggressiveness or even signal a potential de-escalation of supportive therapy as the infection resolves (Heilmann et al., 2021). Oxygenation markers, like central venous oxygen saturation (ScvO<sub>2</sub>) or the newer POC-measured venous-arterial CO<sub>2</sub> gap, provide a direct measure of the balance between oxygen delivery and consumption (Mallat et al., 2020). A falling ScvO<sub>2</sub> could prompt the algorithm to increase oxygen delivery (via fluids, inotropes, or transfusion) before a drop in blood pressure occurs.

The pivotal constraint is turnaround time (TAT). A feedback loop with a latency of 60-90 minutes (common for central lab batches) is useless for real-time control. Therefore, the laboratory's role

evolves in two directions. First, the deployment of POC testing at or very near the bedside becomes critical. Modern POC devices for lactate, blood gases, and electrolytes can provide results in 1-2 minutes, fitting within the control cycle of a HIS (Rajsic et al., 2021). Second, the central laboratory must re-engineer pathways for "stat" biomarkers, potentially using continuous flow analyzers or dedicated, rapid-response instruments for ICU samples, with seamless data integration into the patient's monitoring network (Khatab & Yousef, 2021).

This shift presents significant challenges. POC testing requires rigorous quality control, operator competency, and data management to ensure results are accurately fed into the algorithm (Dubin et al., 2022). Result reliability is non-negotiable; a falsely elevated lactate from a poorly sampled capillary blood gas could trigger an inappropriate and potentially harmful fluid bolus (Boulain et al., 2016). Furthermore, the financial and operational model of the laboratory changes, moving from high-volume batch efficiency to one supporting decentralized, immediate testing. The laboratory professional's role expands to become a consultant on test selection frequency, analytical performance specifications for closed-loop control, and the interpretation of trends within the context of the algorithm's behavior (Subramanian et al., 2020). The laboratory is no longer a passive data provider but an active steward of the biochemical feedback pipeline that drives autonomous therapy.

#### **The Human in the Loop – Nursing at the Interface of Automation and Clinical Context**

The introduction of a Hemodynamic Intelligence System precipitates the most profound change at the bedside: the redefinition of the nurse's role. The romanticized notion of the nurse "titrating drips to keep the patient alive" is replaced by a more complex, cognitively demanding role of system overseer, interpreter, and ultimate safety guardian.

This transition is fraught with challenges related to trust, competency, and alarm management.

A primary concern is alarm fatigue. Current ICUs are cacophonous environments. A HIS, if poorly designed, could generate a cascade of algorithmic alerts: "Unable to reach MAP target," "Biomarker feedback conflicting with hemodynamic data," "Pump adjustment limit reached," "Signal artifact detected" (Storm & Chen, 2020). Nurses must be trained to triage these alarms, differentiating between informational status updates, system errors, and genuine patient crises that require human override. The design principle must be "quiet intelligence"—the system should operate smoothly within defined parameters, alerting the nurse primarily when it encounters an unhandled scenario or requests clinical input (Chromik et al., 2020).

This leads to the concept of human-in-the-loop (HITAL) versus human-on-the-loop (HOTL) control. In a HITAL model, the algorithm proposes an action (e.g., "Increase norepinephrine by 0.05 mcg/kg/min") and the nurse must approve it (Bhangu et al., 2022). This preserves a checkpoint but may negate the speed benefit. In a HOTL model, the system acts autonomously within a broad, pre-authorized therapeutic corridor (maintain MAP 65-75 mmHg using norepinephrine 0.01-0.5 mcg/kg/min), with the nurse monitoring its performance (Fang et al., 2018). Most proposals favor a HOTL model for routine titration, with clear, immediate override capabilities. This requires immense trust, built through transparency (the ability for the nurse to see

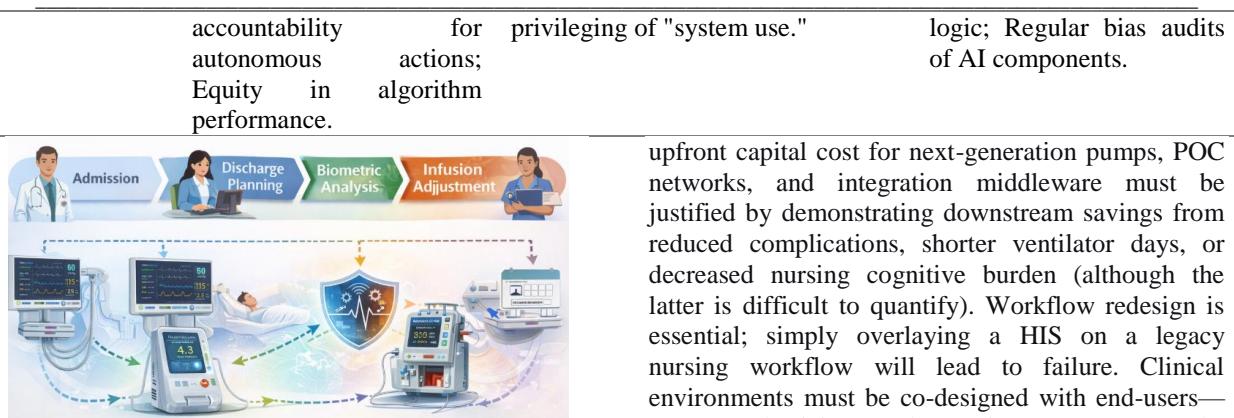
the algorithm's "reasoning") and proven reliability (Patel et al., 2022).

The nurse's irreplaceable value becomes the provision of clinical context. An algorithm sees data streams; the nurse sees the patient. The nurse integrates non-quantifiable data: Is the patient restless or in pain (which elevates blood pressure)? Are they receiving a bath or being turned (which may cause transient hypotension)? Have family members just delivered distressing news? Furthermore, the nurse performs holistic assessment—skin mottling, capillary refill, mentation—that may contradict seemingly adequate digital readings (Ray et al., 2021). A key nursing competency will be algorithmic dissent: knowing when to override the system based on a broader clinical picture. This requires deep understanding of both pathophysiology and the algorithm's limitations.

New nursing competencies must be developed, including basic data science literacy, understanding of control system principles, and advanced troubleshooting of interconnected devices (Kokol et al., 2022). Educational programs and simulation training must shift from teaching manual titration patterns to fostering skills in monitoring automated systems, managing hybrid (part-automated, part-manual) environments, and intervening when automation fails or is inappropriate. The nurse transforms from a manual operator to a master clinical systems manager (Table 2). Figure 2 illustrates the operational pathway of the Hemodynamic Intelligence System (HIS) across the continuum of critical care.

**Table 2: Interdisciplinary Challenges and Requirements for HIS Implementation**

| Domain                                | Key Challenges                                                                                                                                  | Required Advances/Competencies                                                                                                                   | Safety & Governance Considerations                                                                                                              |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Biomedical Engineering</b>         | Signal artifact management; Multi-input algorithm validation; Interoperability (plug-and-play); Cybersecurity.                                  | Development of robust, explainable AI/control algorithms; Standardized data exchange protocols (e.g., IEEE 11073 SDC).                           | Rigorous pre-clinical simulation testing; Fail-safe mechanisms (e.g., fallback to basal rate); Independent algorithm auditing.                  |
| <b>Laboratory Medicine</b>            | Providing rapid, reliable serial biomarker data; POC device management & data integration; Defining analytical performance for closed-loop use. | Deployment of POC networks; Rapid central lab pathways; New role as "feedback loop quality officer."                                             | Strict POC quality control protocols; Redundancy for critical tests (e.g., lactate); Clear flagging of potentially erroneous results.           |
| <b>Nursing Practice</b>               | Alarm fatigue from complex systems; Transition to oversight role; Maintaining situational awareness; Override decision-making.                  | Training in system oversight, data interpretation, and "algorithmic thinking"; Development of human-factors engineering principles in UI design. | Clear protocols for override and escalation; Mandatory "system time-outs" for holistic assessment; Shared governance over algorithm parameters. |
| <b>Clinical Medicine &amp; Ethics</b> | Defining therapeutic corridors & escalation protocols; Liability &                                                                              | Development of consensus guidelines for closed-loop use; New models for credentialing &                                                          | Ethical frameworks for autonomous care; Transparency in algorithm                                                                               |



**Figure 2. Clinical Workflow of the Hemodynamic Intelligence System in Critical Care**  
**Synthesis, Challenges, and the Path Forward**

The vision of a Hemodynamic Intelligence System is no longer science fiction. Its individual components exist and have demonstrated early promise in controlled settings. The synthesis of these components into a reliable, safe, and clinically effective ecosystem, however, presents formidable interdisciplinary hurdles that extend far beyond pure engineering.

A primary challenge is interoperability. The "plug-and-play" integration of devices from different manufacturers remains an elusive goal, despite standards like IEEE 11073. Data formats, communication protocols, and network security models are often proprietary, creating a Tower of Babel at the bedside (Yilmaz et al., 2023). A HIS requires a dedicated, secure, high-fidelity data bus that can aggregate, time-synchronize, and pre-process signals from monitors, pumps, and laboratory servers before feeding them to the control algorithm. Cybersecurity is a paramount concern, as a malicious actor gaining control of a closed-loop vasopressor system represents a catastrophic threat (Lieneck et al., 2023).

Clinical validation and regulation pose another significant hurdle. Regulatory bodies like the FDA are navigating how to classify and evaluate such systems—as a combination of device, software, and potentially even an autonomous therapeutic agent (Intelligence & Learning, 2021). Clinical trials must move beyond surrogate endpoints like time-in-target-range to demonstrate improvements in patient-centered outcomes such as mortality, ICU length of stay, or organ failure-free days. These trials must be large, pragmatic, and include diverse patient populations to ensure algorithms do not perpetuate or exacerbate healthcare disparities (Obermeyer et al., 2019). The "black box" nature of some advanced AI algorithms conflicts with the medical and ethical need for explainability: clinicians must understand *why* the system made a particular adjustment to trust it (Ghassemi et al., 2021).

Finally, the economic and workflow implications must be addressed. The significant

accountability for privileging of "system use." logic; Regular bias audits of AI components.

upfront capital cost for next-generation pumps, POC networks, and integration middleware must be justified by demonstrating downstream savings from reduced complications, shorter ventilator days, or decreased nursing cognitive burden (although the latter is difficult to quantify). Workflow redesign is essential; simply overlaying a HIS on a legacy nursing workflow will lead to failure. Clinical environments must be co-designed with end-users—nurses, physicians, pharmacists—to ensure the system augments rather than disrupts care (Martinez-Millana et al., 2019).

### Conclusion

The Hemodynamic Intelligence System represents a paradigm shift in critical care, from intermittent, clinician-driven intervention to continuous, physiology-driven optimization. This narrative review has articulated the convergent paths of biomedical engineering, laboratory medicine, and nursing practice that make this vision attainable. The intelligent pump serves as the hand, the multi-parameter algorithm as the brain, and rapid biomarker feedback as the sensory nervous system. Yet, the nurse remains the indispensable heart of the operation—the source of clinical wisdom, ethical oversight, and compassionate context.

The path forward is not merely technical. It demands unprecedented collaboration. Engineers must work alongside intensivists to build clinically intuitive algorithms. Laboratory scientists must partner with informaticians to create resilient real-time data streams. Nurses must be integral to the design process, ensuring the human-machine interface fosters vigilance rather than complacency. Ethicists and hospital administrators must collaboratively develop governance models for shared responsibility between humans and autonomous systems.

Future research must prioritize robust multicenter clinical trials, the development of open-source algorithm platforms for validation, and intensive study of the human factors surrounding autonomous system supervision. The goal is not to replace the clinician but to create a powerful partnership—a synergy where algorithmic precision and relentless consistency are combined with human intuition and holistic care. In doing so, the Hemodynamic Intelligence System holds the potential to finally close the persistent feedback loops in shock management, offering a more precise, responsive, and ultimately more humane standard of care for the most critically ill patients.

### References

1. Alhazzani, W., Evans, L., Alshamsi, F., Møller, M. H., Ostermann, M., Prescott, H. C., ... & Rhodes, A. (2021). Surviving sepsis campaign

guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. *Critical care medicine*, 49(3), e219-e234.

DOI: 10.1097/CCM.00000000000004899

2. Bhangu, A., Notario, L., Pinto, R. L., Pannell, D., Thomas-Boaz, W., Freedman, C., ... & da Luz, L. (2022). Closed loop communication in the trauma bay: identifying opportunities for team performance improvement through a video review analysis. *Canadian Journal of Emergency Medicine*, 24(4), 419-425. <https://doi.org/10.1007/s43678-022-00295-z>
3. Boulain, T., Garot, D., Vignon, P., Lascarrou, J. B., Benzekri-Lefevre, D., & Dequin, P. F. (2016). Predicting arterial blood gas and lactate from central venous blood analysis in critically ill patients: a multicentre, prospective, diagnostic accuracy study. *BJA: British Journal of Anaesthesia*, 117(3), 341-349. <https://doi.org/10.1093/bja/aew261>
4. Chromik, J., Klopfenstein, S. A. I., Pfitzner, B., Sinno, Z. C., Arnrich, B., Balzer, F., & Poncette, A. S. (2022). Computational approaches to alleviate alarm fatigue in intensive care medicine: A systematic literature review. *Frontiers in digital health*, 4, 843747. <https://doi.org/10.3389/fdgh.2022.843747>
5. Desebbe, O., Rinehart, J., Van der Linden, P., Cannesson, M., Delannoy, B., Vigneron, M., ... & Joosten, A. (2022). Control of postoperative hypotension using a closed-loop system for norepinephrine infusion in patients after cardiac surgery: a randomized trial. *Anesthesia & Analgesia*, 134(5), 964-973. DOI: 10.1213/ANE.0000000000005888
6. DeSimone, A. K., Kapoor, N., Lacson, R., Budiawan, E., Hammer, M. M., Desai, S. P., ... & Khorasani, R. (2023). Impact of an automated closed-loop communication and tracking tool on the rate of recommendations for additional imaging in thoracic radiology reports. *Journal of the American College of Radiology*, 20(8), 781-788. <https://doi.org/10.1016/j.jacr.2023.05.004>
7. Dubin, A., Loudet, C. I., Hurtado, F. J., Pozo, M. O., Comande, D., Gibbons, L., ... & Bardach, A. (2022). Comparison of central venous minus arterial carbon dioxide pressure to arterial minus central venous oxygen content ratio and lactate levels as predictors of mortality in critically ill patients: a systematic review and meta-analysis. *Revista Brasileira de Terapia Intensiva*, 34, 279-286. <https://doi.org/10.5935/0103-507X.20220026-en>
8. Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C. M., French, C., ... & Levy, M. (2021). Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. *Critical care medicine*, 49(11), 1974-1982. DOI: 10.1097/CCM.0000000000005357
9. Fang, D. Z., Patil, T., Belitskaya-Levy, I., Yeung, M., Posley, K., & Allaudeen, N. (2018). Use of a hands free, instantaneous, closed-loop communication device improves perception of communication and workflow integration in an academic teaching hospital: a pilot study. *Journal of Medical Systems*, 42(1), 4. <https://doi.org/10.1007/s10916-017-0864-7>
10. Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. *The lancet digital health*, 3(11), e745-e750. [https://doi.org/10.1016/S2589-7500\(21\)00208-9](https://doi.org/10.1016/S2589-7500(21)00208-9)
11. Heilmann, E., Gregoriano, C., Wirz, Y., Luyt, C. E., Wolff, M., Chastre, J., ... & Schuetz, P. (2021). Association of kidney function with effectiveness of procalcitonin-guided antibiotic treatment: a patient-level meta-analysis from randomized controlled trials. *Clinical Chemistry and Laboratory Medicine (CCLM)*, 59(2), 441-453. <https://doi.org/10.1515/cclm-2020-0931>
12. Intelligence, A., & Learning, M. (2021). Based software as a medical device (samd) action plan. *Food and Drug Administration*, 2021-06.
13. Jansen, T. C., van Bommel, J., Schoonderbeek, F. J., Sleeswijk Visser, S. J., van der Klooster, J. M., Lima, A. P., ... & Bakker, J. (2010). Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. *American journal of respiratory and critical care medicine*, 182(6), 752-761. <https://doi.org/10.1164/rccm.200912-1918OC>
14. Khatab, Z., & Yousef, G. M. (2021). Disruptive innovations in the clinical laboratory: catching the wave of precision diagnostics. *Critical reviews in clinical laboratory sciences*, 58(8), 546-562. <https://doi.org/10.1080/10408363.2021.1943302>
15. Kokol, P., Vošner, H. B., & Završnik, J. (2022). Knowledge Development in Artificial Intelligence Use in Paediatrics. *Knowledge*, 2(2), 185-190. <https://doi.org/10.3390/knowledge2020011>
16. Kost, G. J., Zadran, A., Zadran, L., & Ventura, I. (2019). Point-of-care testing curriculum and accreditation for public health—Enabling preparedness, response, and higher standards of care at points of need. *Frontiers in public health*, 6, 385. <https://doi.org/10.3389/fpubh.2018.00385>
17. Lieneck, C., McLauchlan, M., & Phillips, S. (2023, November). Healthcare cybersecurity ethical concerns during the COVID-19 global pandemic: a rapid review. In *Healthcare* (Vol.

11, No. 22, p. 2983). MDPI. <https://doi.org/10.3390/healthcare11222983>

18. Mallat, J., Baghdadi, F. A., Mohammad, U., Lemyze, M., Temime, J., Tronchon, L., ... & Fischer, M. O. (2020). Central venous-to-arterial PCO<sub>2</sub> difference and central venous oxygen saturation in the detection of extubation failure in critically ill patients. *Critical care medicine*, 48(10), 1454-1461. DOI: 10.1097/CCM.0000000000004446

19. Martinez-Millana, A., & Martinez-Piqueras, M. (2019). Closed-Loop Ergonomics in the Factory of the Future: A Practical Approach from FASyS Project. In *Transforming Ergonomics with Personalized Health and Intelligent Workplaces* (pp. 65-84). IOS Press. Doi: 10.3233/978-1-61499-973-7-65

20. Marwitz, K. K., Fritschle, A. C., Trivedi, V., Covert, M. L., Walroth, T. A., DeLaurentis, P., ... & Degnan, D. (2020). Investigating multiple sources of data for smart infusion pump and electronic health record interoperability. *American Journal of Health-System Pharmacy*, 77(17), 1417-1423. <https://doi.org/10.1093/ajhp/zxa115>

21. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science*, 366(6464), 447-453. <https://doi.org/10.1126/science.aax2342>

22. Patel, N. T., Goenaga-Diaz, E. J., Lane, M. R., Austin Johnson, M., Neff, L. P., & Williams, T. K. (2022). Closed-loop automated critical care as proof-of-concept study for resuscitation in a swine model of ischemia-reperfusion injury. *Intensive Care Medicine Experimental*, 10(1), 30. <https://doi.org/10.1186/s40635-022-00459-2>

23. Pinsky, M. R., Cecconi, M., Chew, M. S., De Backer, D., Douglas, I., Edwards, M., ... & Vincent, J. L. (2022). Effective hemodynamic monitoring. *Critical Care*, 26(1), 294. <https://doi.org/10.1186/s13054-022-04173-z>

24. Pinsky, M. R., & Payen, D. (2005). Functional hemodynamic monitoring: foundations and future. In *Functional Hemodynamic Monitoring* (pp. 3-6). Berlin, Heidelberg: Springer Berlin Heidelberg.

25. Rajsic, S., Breitkopf, R., Bachler, M., & Treml, B. (2021). Diagnostic modalities in critical care: point-of-care approach. *Diagnostics*, 11(12), 2202. <https://doi.org/10.3390/diagnostics11122202>

26. Ray, S., Sundaram, V., Dutta, S., & Kumar, P. (2021). Ensuring administration of first dose of antibiotics within the golden hour of management in neonates with sepsis. *BMJ Open Quality*, 10(Suppl 1). <https://doi.org/10.1136/bmjoq-2021-001365>

27. Rinehart, J., Ma, M., Calderon, M. D., Bardaji, A., Hafiane, R., Van der Linden, P., & Joosten, A. (2019). Blood pressure variability in surgical and intensive care patients: Is there a potential for closed-loop vasopressor administration?. *Anaesthesia Critical Care & Pain Medicine*, 38(1), 69-71. <https://doi.org/10.1016/j.accpm.2018.11.009>

28. Rinehart, J., Lee, S., Saugel, B., & Joosten, A. (2021, February). Automated blood pressure control. In *Seminars in respiratory and critical care medicine* (Vol. 42, No. 01, pp. 047-058). Thieme Medical Publishers, Inc.. DOI: 10.1055/s-0040-1713083

29. Saraswat, D., Bhattacharya, P., Verma, A., Prasad, V. K., Tanwar, S., Sharma, G., ... & Sharma, R. (2022). Explainable AI for healthcare 5.0: opportunities and challenges. *IEEE Access*, 10, 84486-84517. <https://doi.org/10.1109/ACCESS.2022.3197671>

30. Storm, J., & Chen, H. C. (2021). The relationships among alarm fatigue, compassion fatigue, burnout and compassion satisfaction in critical care and step-down nurses. *Journal of clinical nursing*, 30(3-4), 443-453. <https://doi.org/10.1111/jocn.15555>

31. Subramanian, S., Pamplin, J. C., Hravnak, M., Hielsberg, C., Riker, R., Rincon, F., ... & Herasevich, V. (2020). Tele-critical care: an update from the society of critical care medicine tele-ICU committee. *Critical care medicine*, 48(4), 553-561. DOI: 10.1097/CCM.0000000000004190

32. Wingert, T., Lee, C., & Cannesson, M. (2021). Machine learning, deep learning, and closed loop devices—anesthesia delivery. *Anesthesiology clinics*, 39(3), 565-581. <https://doi.org/10.1016/j.anclin.2021.03.012>

33. Yilmaz, O., Radermacher, K., Beger, F., Roth, J., & Janß, A. (2023). Usability evaluation of a process optimized integrated workstation based on the IEEE 11073 SDC standard. *Healthcare and Medical Devices*, 133. <https://doi.org/10.54941/ahfe1003481>

34. Zhou, A., Johnson, B. C., & Muller, R. (2018). Toward true closed-loop neuromodulation: artifact-free recording during stimulation. *Current opinion in neurobiology*, 50, 119-127. <https://doi.org/10.1016/j.conb.2018.01.012>