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Abstract

Background: The management of acute hemodynamic instability, particularly in sepsis and shock, remains a high-stakes
challenge characterized by time-sensitive interventions and dynamic physiological changes. Recent technological advances in
smart infusion pumps, continuous physiological monitoring, and rapid biomarker analysis present an unprecedented
opportunity for integration.

Aim: This narrative review aims to synthesize the current evidence and conceptual frameworks for a Hemodynamic
Intelligence System (HIS)—a closed-loop integration of bedside monitors, biomarker analysis, and smart infusion pumps—to
enable autonomous, physiologically adaptive drug delivery for conditions like sepsis and shock.

Methods: A comprehensive literature search was conducted across PubMed, IEEE Xplore, CINAHL, and Web of Science for
English-language articles published between 2010 and 2024.

Results: The convergence of these technologies is technically feasible and shows promise in early-stage clinical studies for
improving protocol adherence and reducing time-to-therapeutic goals. Laboratory medicine must evolve to provide analyzers
with sufficient rapidity and reliability for real-time feedback. Nursing faces a paradigm shift towards system oversight and
alarm management, requiring new competencies in data interpretation and human-machine interaction.

Conclusion: The Hemodynamic Intelligence System represents a transformative vision for critical care. Its successful
implementation hinges not on technological capability alone, but on rigorous interdisciplinary collaboration to address
challenges in system safety, clinical workflow integration, and the preservation of the nurse's indispensable role as clinical
contextualizer. Future research must prioritize robust clinical outcome trials and the development of shared governance
models for autonomous systems.

Keywords: Closed-Loop System, Smart Infusion Pump, Hemodynamic Monitoring, Point-of-Care Testing, Sepsis
Management..

Introduction
The  management of  hemodynamic
instability in sepsis, septic shock, and other

discontinuous loop: clinicians interpret snapshots of
data—vital signs, laboratory values, clinical
assessment—and manually adjust interventions, such

distributive shock states represents a quintessential
challenge in modern critical care. Despite decades of
research and protocolization, mortality remains
stubbornly high, often attributable to delays in
recognition, inadequate initial resuscitation, or failure
to dynamically adapt therapy to a patient’s evolving
physiological state (Evans et al., 2021; Alhazzani et
al., 2021). Traditional management operates on a

as fluid boluses or vasopressor infusions. This
process is inherently limited by human cognitive
load, workflow interruptions, and the episodic nature
of data acquisition (Chromik et al., 2020). The lag
between physiological change, data availability,
clinical decision, and manual pump adjustment can
be consequential, particularly in the fragile "golden
hour" of sepsis management (Ray et al., 2021).
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Concurrently, three technological streams
have matured significantly: smart infusion
pumps with  dose-error reduction software and
network  connectivity; advanced  hemodynamic
monitors capable  of  continuous,  high-fidelity
waveform analysis and derived parameters; and rapid
turnaround biomarker analysis via point-of-care
(POC) platforms or optimized central laboratory
pathways (Marwitz et al., 2020). Historically, these
systems have operated in silos, generating data that
must be mentally integrated by the clinician. The next
logical, and arguably necessary, step is their
intentional  integration  into  a Hemodynamic
Intelligence System (HIS)—a closed-loop control
system  where real-time  physiological and
biochemical data automatically modulate the delivery
of life-supporting medications (Rinehart et al., 2019).
Figure 1 presents a schematic overview of the
Hemodynamic Intelligence System (HIS), illustrating
the closed-loop integration between bedside
hemodynamic monitors, rapid biomarker analysis,
central control algorithms, and smart infusiocrlpumps.
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Figure 1. Core Components of the Hemodynamic
Intelligence System (HIS)

This review investigates the convergence of
these technologies to create dynamic, automated
treatment protocols. It will critically examine the
biomedical  engineering  principles  enabling
"intelligent” pumps, the evolving role of the
laboratory in providing real-time biochemical
feedback, and the transformative—yet complex—
impact on nursing practice, which must shift from
manual titrator to system supervisor and clinical
contextualizer. The ultimate aim is to move beyond
isolated "smart" devices to propose and evaluate the
framework for a fully integrated, physiologically
adaptive drug delivery ecosystem.

The Biomedical Engineering Core — Designing the
Intelligent Pump and Algorithmic Heart

The engineering  foundation of a
Hemodynamic Intelligence System rests on two
interdependent pillars: the actuation device (the smart
infusion pump) and the control algorithm that dictates
its behavior based on input data. Modern smart
pumps are technologically poised for this role. They
are increasingly equipped with Dbidirectional
communication via the IEEE 11073 SDC (Service-
Oriented Device Connectivity) standard or other
interoperability frameworks, allowing them to receive
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external input and transmit status logs (Yilmaz et al.,
2023). The actuation mechanism itself must be
precise and responsive over a wide range of flow
rates, especially for potent vasoactive drugs where
minute changes in dose can have significant
hemodynamic effects (DeSimone et al., 2023).

The true intelligence, however, resides in the
control algorithm. This software interprets a
continuous stream of hemodynamic data. Inputs can
range from basic parameters like non-invasive blood
pressure (NIBP) and heart rate to sophisticated
analyses of arterial pressure waveform morphology.
Parameters such as stroke volume variation (SVV),
pulse pressure variation (PPV), and the dynamic
elastance of the arterial system provide nuanced
insights into fluid responsiveness and vascular tone
that static blood pressure readings cannot (Pinsky &
Payen, 2005). The algorithm’s first task is signal
processing—filtering out artifacts from patient
movement, suctioning, or other nursing activities to
ensure decisions are based on valid physiological
data (Zhou et al., 2018). This remains a significant
challenge, as misinterpreting artifact for signal could
lead to dangerous autonomous adjustments.

Control strategies vary in complexity.
Simple threshold-based algorithms (if MAP < 65
mmHg for 2 minutes, increase norepinephrine rate by
0.02 mcg/kg/min) are easier to validate but lack
sophistication. More advanced models employ
proportional-integral-derivative  (PID) controllers,
fuzzy logic, or even machine learning models trained
on vast datasets of hemodynamic responses (Rinehart
et al., 2021). A PID controller, for instance, would
adjust the infusion rate not just based on the current
error (difference from target MAP), but also on how
long the error has persisted (integral) and how
quickly it is changing (derivative), leading to
smoother and more stable control (Wingert et al.,
2021). Machine learning approaches promise to
personalize therapy by predicting individual patient
responsiveness, but they raise concerns regarding
"black box" decision-making and the need for
extensive, diverse training datasets to avoid bias
(Saraswat et al., 2022).

Early clinical implementations have focused
on closed-loop vasopressor control. Proof-of-concept
and small-scale randomized trials have demonstrated
that such systems can maintain mean arterial pressure
(MAP) within a target range more consistently than
manual titration, reduce the duration of hypotension,
and decrease clinician workload (Desebbe et al.,
2022; Patel et al., 2022). However, these studies have
largely used blood pressure as the sole input variable.
The next evolution is a multi-input, multi-output
system. In such a system, the algorithm must
reconcile potentially conflicting goals: for example,
using fluids to address low stroke volume (preload)
while using vasopressors to address low systemic
vascular resistance (afterload), all while monitoring
for signs of fluid overload or inadequate tissue
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perfusion (Pinsky et al., 2022). This requires the
integration of the second critical data stream:

biochemical feedback from the laboratory (Table 1).

Table 1: Evolution of Smart Infusion Pumps Towards Closed-Loop Integration

Generation Key Capabilities Limitations Integration Level
st  Gen: Basic Programmable flow rates, basic No safety software, standalone None. Siloed
Pumps alarms. operation. device.

2nd Gen: "Smart" Dose Error Reduction Software Alarms are reactive; decisions Low. Data may be

Pumps (DERS), drug libraries, remain manual. Interoperability logged but not
upper/lower hard limits. limited. acted upon.

3rd Gen: Networked Bidirectional EMR Can receive orders but Medium.

Pumps communication, auto- not act autonomously on Integrated into
documentation, updated physiological data. workflow but not
libraries. control loop.

4th Gen: Receives real-time data from Requires flawless High. Core

Physiologically monitors/labs, hosts or executes interoperability, robust actuator in a

Responsive  Pumps control  algorithms,  makes algorithms, and new safety closed-loop

(HIS Component) micro-adjustments within  paradigms for clinical biological control
clinician-set bounds. oversight. system.

The Biochemical Feedback Loop - The
Laboratory’s Role in Real-Time Physiology

A hemodynamic system responding solely
to blood pressure and waveform analysis is akin to
driving a car by only looking at the speedometer,
ignoring the fuel gauge, engine temperature, and
warning lights. Biochemical markers provide the
essential "fuel gauge and diagnostic readout™ of
cellular metabolism and the host response. For a HIS
to be physiologically comprehensive, it must
incorporate rapid, serial biomarker analysis as a
feedback trigger. This demands a paradigm shift in
laboratory medicine from a batch-processing,
centralised model to one supporting near-continuous,
actionable data streams (Kost et al., 2019).

The relevant biomarkers fall into categories
that inform different aspects of the shock
state. Perfusion markers, like lactate, remain a
cornerstone of sepsis management. Serial lactate
measurements, with a focus on clearance, are
strongly linked to outcomes (Jansen et al., 2010). A
HIS algorithm could be programmed to trigger a fluid
challenge or reassess cardiac output if lactate fails to
decrease despite normalized blood
pressure. Inflammatory and diagnostic markers, such
as procalcitonin  (PCT), could guide algorithm
aggressiveness or even signal a potential de-
escalation of supportive therapy as the infection
resolves (Heilmann et al., 2021). Oxygenation
markers, like central venous oxygen saturation
(Scv0?2) or the newer POC-measured venous-arterial
CO2 gap, provide a direct measure of the balance
between oxygen delivery and consumption (Mallat et
al.,, 2020). A falling ScvO2 could prompt the
algorithm to increase oxygen delivery (via fluids,
inotropes, or transfusion) before a drop in blood
pressure occurs.

The pivotal constraint is turnaround time
(TAT). A feedback loop with a latency of 60-90
minutes (common for central lab batches) is useless
for real-time control. Therefore, the laboratory’s role
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evolves in two directions. First, the deployment
of POC testing at or very near the bedside becomes
critical. Modern POC devices for lactate, blood gases,
and electrolytes can provide results in 1-2 minutes,
fitting within the control cycle of a HIS (Rajsic et al.,
2021). Second, the central laboratory must re-
engineer pathways for “stat” biomarkers, potentially
using continuous flow analyzers or dedicated, rapid-
response instruments for ICU samples, with seamless
data integration into the patient’s monitoring network
(Khatab & Yousef, 2021).

This shift presents significant challenges.
POC testing requires rigorous quality control,
operator competency, and data management to ensure
results are accurately fed into the algorithm (Dubin et
al.,, 2022). Result reliability is non-negotiable; a
falsely elevated lactate from a poorly sampled
capillary blood gas could trigger an inappropriate and
potentially harmful fluid bolus (Boulain et al., 2016).
Furthermore, the financial and operational model of
the laboratory changes, moving from high-volume
batch efficiency to one supporting decentralized,
immediate testing. The laboratory professional’s role
expands to become a consultant on test selection
frequency, analytical performance specifications for
closed-loop control, and the interpretation of trends
within the context of the algorithm’s behavior
(Subramanian et al., 2020). The laboratory is no
longer a passive data provider but an active steward
of the biochemical feedback pipeline that drives
autonomous therapy.
The Human in the Loop — Nursing at the Interface
of Automation and Clinical Context

The introduction of a Hemodynamic
Intelligence System precipitates the most profound
change at the bedside: the redefinition of the nurse’s
role. The romanticized notion of the nurse "titrating
drips to keep the patient alive" is replaced by a more
complex, cognitively demanding role of system
overseer, interpreter, and ultimate safety guardian.
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This transition is fraught with challenges related to
trust, competency, and alarm management.

A primary concern is alarm fatigue. Current
ICUs are cacophonous environments. A HIS, if
poorly designed, could generate a cascade of
algorithmic alerts: "Unable to reach MAP target,”
"Biomarker feedback conflicting with hemodynamic
data,” "Pump adjustment limit reached,"” "Signal
artifact detected” (Storm & Chen, 2020). Nurses must
be trained to triage these alarms, differentiating
between informational status updates, system errors,
and genuine patient crises that require human
override. The design principle must be "quiet
intelligence"—the system should operate smoothly
within defined parameters, alerting the nurse
primarily when it encounters an unhandled scenario
or requests clinical input (Chromik et al., 2020).

This leads to the concept of human-in-the-
loop (HITL) versus human-on-the-loop
(HOTL) control. In a HITL model, the algorithm
proposes an action (e.g., "Increase norepinephrine by
0.05 mcg/kg/min™) and the nurse must approve it
(Bhangu et al., 2022). This preserves a checkpoint
but may negate the speed benefit. In a HOTL model,
the system acts autonomously within a broad, pre-
authorized therapeutic corridor (maintain MAP 65-75
mmHg using norepinephrine 0.01-0.5 mcg/kg/min),
with the nurse monitoring its performance (Fang et
al., 2018). Most proposals favor a HOTL model for
routine titration, with clear, immediate override
capabilities. This requires immense trust, built
through transparency (the ability for the nurse to see

the algorithm’s "reasoning") and proven reliability
(Patel et al., 2022).

The nurse’s irreplaceable value becomes the
provision of clinical context. An algorithm sees data
streams; the nurse sees the patient. The nurse
integrates non-quantifiable data: Is the patient restless
or in pain (which elevates blood pressure)? Are they
receiving a bath or being turned (which may cause
transient hypotension)? Have family members just
delivered distressing news? Furthermore, the nurse
performs  holistic  assessment—skin ~ mottling,
capillary refill, mentation—that may contradict
seemingly adequate digital readings (Ray et al.,
2021). A key nursing competency will be algorithmic
dissent: knowing when to override the system based
on a broader clinical picture. This requires deep
understanding of both pathophysiology and the
algorithm’s limitations.

New nursing competencies must be
developed, including basic data science literacy,
understanding of control system principles, and
advanced troubleshooting of interconnected devices
(Kokol et al., 2022). Educational programs and
simulation training must shift from teaching manual
titration patterns to fostering skills in monitoring
automated  systems, managing hybrid (part-
automated,  part-manual)  environments, and
intervening when automation fails or is inappropriate.
The nurse transforms from a manual operator to a
master clinical systems manager (Table 2). Figure 2
illustrates the operational pathway of the
Hemodynamic Intelligence System (HIS) across the
continuum of critical care.

Table 2: Interdisciplinary Challenges and Requirements for HIS Implementation

Domain Key Challenges Required Advances/Competencies Safety & Governance
Considerations
Biomedical Signal artifact Development of robust, explainable Rigorous pre-clinical
Engineering  management; Multi-input  Al/control algorithms; Standardized simulation testing; Fail-
algorithm validation; data exchange protocols (e.g., IEEE safe mechanisms (e.g.,
Interoperability (plug-and- 11073 SDC). fallback to basal rate);
play); Cybersecurity. Independent algorithm
auditing.
Laboratory Providing rapid, reliable Deployment of POC networks; Strict POC quality control
Medicine serial biomarker data; Rapid central lab pathways; New protocols; Redundancy for
POC device management role as "feedback loop quality critical tests (e.g., lactate);
& data integration; officer.” Clear flagging of
Defining analytical potentially erroneous
performance for closed- results.
loop use.
Nursing Alarm fatigue ~ from Training in system oversight, data Clear protocols for
Practice complex systems; interpretation, and “algorithmic override and escalation;
Transition to oversight thinking"; Development of human- Mandatory "system time-
role; Maintaining factors engineering principles in Ul outs" for holistic
situational awareness;  design. assessment; Shared
Override decision-making. governance over algorithm
parameters.
Clinical Defining therapeutic Development of consensus Ethical frameworks for
Medicine & corridors & escalation guidelines for closed-loop use; New autonomous care;
Ethics protocols;  Liability & models for credentialing & Transparency in algorithm
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accountability for privileging of "system use." logic; Regular bias audits
autonomous actions; of Al components.

Equity in  algorithm

performance.

Figure 2. Clinical Workflow of the Hemodynamic
Intelligence System in Critical Care
Synthesis, Challenges, and the Path Forward

The vision of a Hemodynamic Intelligence
System is no longer science fiction. Its individual
components exist and have demonstrated early
promise in controlled settings. The synthesis of these
components into a reliable, safe, and clinically
effective ecosystem, however, presents formidable
interdisciplinary hurdles that extend far beyond pure
engineering.

A primary challenge is interoperability. The
"plug-and-play" integration of devices from different
manufacturers remains an elusive goal, despite
standards like IEEE 11073. Data formats,
communication protocols, and network security
models are often proprietary, creating a Tower of
Babel at the bedside (Yilmaz et al., 2023). A HIS
requires a dedicated, secure, high-fidelity data bus
that can aggregate, time-synchronize, and pre-process
signals from monitors, pumps, and laboratory servers
before feeding them to the control algorithm.
Cybersecurity is a paramount concern, as a malicious
actor gaining control of a closed-loop vasopressor
system represents a catastrophic threat (Lieneck et
al., 2023).

Clinical validation and regulation pose
another significant hurdle. Regulatory bodies like the
FDA are navigating how to classify and evaluate such
systems—as a combination of device, software, and
potentially even an autonomous therapeutic agent
(Intelligence & Learning, 2021). Clinical trials must
move beyond surrogate endpoints like time-in-target-
range to demonstrate improvements in patient-
centered outcomes such as mortality, ICU length of
stay, or organ failure-free days. These trials must be
large, pragmatic, and include diverse patient
populations to ensure algorithms do not perpetuate or
exacerbate healthcare disparities (Obermeyer et al.,
2019). The "black box" nature of some advanced Al
algorithms conflicts with the medical and ethical
need for  explainability: clinicians  must
understand why the system made a particular
adjustment to trust it (Ghassemi et al., 2021).

Finally, the economic and  workflow
implications must be addressed. The significant
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upfront capital cost for next-generation pumps, POC
networks, and integration middleware must be
justified by demonstrating downstream savings from
reduced complications, shorter ventilator days, or
decreased nursing cognitive burden (although the
latter is difficult to quantify). Workflow redesign is
essential; simply overlaying a HIS on a legacy
nursing workflow will lead to failure. Clinical
environments must be co-designed with end-users—
nurses, physicians, pharmacists—to ensure the
system augments rather than disrupts care (Martinez-
Millana et al., 2019).

Conclusion

The Hemodynamic Intelligence System
represents a paradigm shift in critical care, from
intermittent,  clinician-driven  intervention  to
continuous, physiology-driven optimization. This
narrative review has articulated the convergent paths
of biomedical engineering, laboratory medicine, and
nursing practice that make this vision attainable. The
intelligent pump serves as the hand, the multi-
parameter algorithm as the brain, and rapid biomarker
feedback as the sensory nervous system. Yet, the
nurse remains the indispensable heart of the
operation—the source of clinical wisdom, ethical
oversight, and compassionate context.

The path forward is not merely technical. It
demands unprecedented collaboration. Engineers
must work alongside intensivists to build clinically
intuitive algorithms. Laboratory scientists must
partner with informaticians to create resilient real-
time data streams. Nurses must be integral to the
design process, ensuring the human-machine
interface fosters vigilance rather than complacency.
Ethicists and  hospital  administrators  must
collaboratively develop governance models for
shared  responsibility  between humans and
autonomous systems.

Future research must prioritize robust
multicenter clinical trials, the development of open-
source algorithm platforms for validation, and
intensive study of the human factors surrounding
autonomous system supervision. The goal is not to
replace the clinician but to create a powerful
partnership—a synergy where algorithmic precision
and relentless consistency are combined with human
intuition and holistic care. In doing so, the
Hemodynamic Intelligence System holds the
potential to finally close the persistent feedback loops
in shock management, offering a more precise,
responsive, and ultimately more humane standard of
care for the most critically ill patients.
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