

Bladder Trauma: Clinical Evaluation, Surgical Management, Anesthetic Considerations, and Laboratory Assessment

Sultan Ali Mohammed Alhayani ⁽¹⁾, Naif Naser Hadi Thalami ⁽²⁾, Haitham Ali Yahya Muharraq ⁽³⁾, Huda Atiah Huzaym Alanazi ⁽⁴⁾, Ishraq Siddiq Hakam ⁽⁵⁾, Fahad Fayadh Alanazi ⁽⁶⁾, Hani Eid Alharbi ⁽⁷⁾, Abdulkarim Raja Allah Dulaym Almohammadi ⁽⁸⁾, Jumail Ali alharthi ⁽⁹⁾, Mansour Nasser Mansour AL Meseaied ⁽¹⁰⁾, Sahab Rubya Saad ⁽¹¹⁾

(1) Aseer health cluster, Rejal Almaa General Hospital, Ministry of Health, Saudi Arabia,

(2) Abu Arish, King Fahad Central Hospital-Jazan, Ministry of Health, Saudi Arabia,

(3) Jazan, King Fahad Central Hospital-Jazan, Ministry of Health, Saudi Arabia,

(4) East Mohammed Health Center, Ministry of Health, Saudi Arabia,

(5) Prince Mohamed bin Nasser hospital, Ministry of Health, Saudi Arabia,

(6) Dharma General Hospital, Ministry of Health, Saudi Arabia,

(7) King Salman Bin Abdulaziz Medical City, Ministry of Health, Saudi Arabia,

(8) Ministry of Health, Saudi Arabia,

(9) King Salman hospital, Ministry of Health, Saudi Arabia,

(10) Laboratory Technician, Wadi Ad Dawasir Hospital, Ministry of Health, Saudi Arabia,

(11) Tathleeth General Hospital, Ministry of Health, Saudi Arabia

Abstract

Background: Bladder trauma is an uncommon but clinically significant injury, often associated with pelvic fractures and high-energy trauma.

Aim: To review the clinical evaluation, surgical management, anesthetic considerations, and laboratory assessment of bladder trauma.

Methods: A comprehensive analysis of current literature and guidelines was conducted, focusing on etiology, epidemiology, pathophysiology, diagnostic strategies, and treatment protocols.

Results: Bladder injuries are classified as extraperitoneal (60%), intraperitoneal (30%), or combined (10%). Gross hematuria is the most consistent clinical sign. CT cystography remains the gold standard for diagnosis. Intraperitoneal ruptures require surgical repair, while uncomplicated extraperitoneal injuries are managed conservatively with catheter drainage. Multidisciplinary care and adherence to imaging protocols reduce morbidity and mortality.

Conclusion: Early recognition, accurate imaging, and tailored management are essential for optimal outcomes.

Keywords: Bladder trauma, pelvic fracture, CT cystography, surgical repair, urinary extravasation.

Introduction

Bladder trauma represents a relatively infrequent form of genitourinary injury within the spectrum of acute trauma care. It most commonly arises when an external force is applied to a distended urinary bladder, which increases susceptibility to rupture. High energy mechanisms, particularly those that disrupt the pelvic ring, play a central role in the pathogenesis of many bladder injuries. Penetrating trauma and iatrogenic causes, especially during pelvic or urologic procedures, also contribute to the overall incidence. These mechanisms reflect the close anatomic relationship between the bladder, bony pelvis, and adjacent organs, which explains the

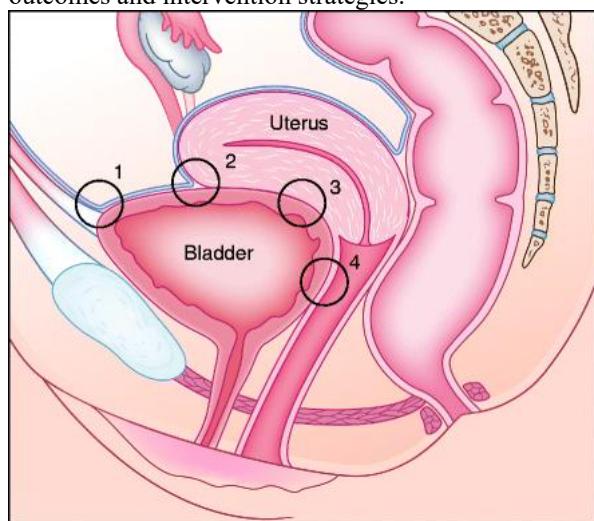
frequent association with multisystem trauma. From a clinical and academic perspective, bladder injuries are classified into extraperitoneal, intraperitoneal, or combined patterns. This classification carries direct implications for diagnostic strategies and therapeutic decision making. Extraperitoneal injuries often result from pelvic fractures with bony spicules causing localized bladder wall disruption. Intraperitoneal injuries typically occur when a sudden increase in intravesical pressure leads to rupture at the bladder dome, which is the weakest point. Combined injuries reflect severe trauma and pose greater challenges for management. This anatomical distinction remains central to contemporary urologic practice [1][2].

Accurate assessment of morbidity and mortality attributable solely to bladder trauma remains limited in the literature. Patients rarely present with isolated bladder injury. Most cases occur in the context of complex abdominal or pelvic trauma. Concomitant vascular, orthopedic, and visceral injuries frequently dominate the clinical picture and influence outcomes. As a result, reported complication rates often reflect the cumulative burden of associated injuries rather than bladder damage alone. Despite its relative rarity, bladder trauma carries clinically significant consequences. Injuries to the bladder are identified in up to 10% of patients with abdominal trauma and are associated with reported morbidity and mortality rates ranging from 10% to 22% [1][2]. These figures underscore the need for early recognition, appropriate imaging, and timely intervention. Failure to diagnose bladder injury can lead to severe complications, including infection, electrolyte imbalance, and prolonged hospitalization, which reinforces its importance within trauma and urologic care.

Etiology

Bladder trauma arises from a diverse range of mechanisms, most commonly associated with motor vehicle collisions, occupational accidents, and acts of interpersonal violence, though iatrogenic causes remain a significant contributor. Blunt bladder injuries typically follow two primary patterns. The first occurs when a high-energy force is applied to a distended bladder, which predominantly results in intraperitoneal rupture. The second pattern is associated with pelvic fractures, where bony fragments compromise the bladder wall, usually producing extraperitoneal injuries. These mechanisms explain why bladder trauma frequently coincides with orthopedic injuries, as well as visceral damage to adjacent abdominopelvic organs, complicating both diagnosis and management. Epidemiological studies have demonstrated that traumatic bladder rupture constitutes approximately 1.6% of blunt abdominopelvic trauma cases [3]. However, reporting and classification challenges limit consistency in the literature. Some analyses suggest that roughly 85% of bladder injuries are attributable to blunt trauma, while others report that penetrating trauma may account for up to 51% of cases [4][5]. This discrepancy reflects differences in study populations, trauma mechanisms, and reporting methods. National data indicate that the overall incidence of penetrating injuries is under 10%, yet penetrating trauma contributes disproportionately to bladder injuries, underscoring the vulnerability of the bladder in certain high-risk events [4][6]. Iatrogenic bladder trauma represents a smaller but clinically important subset. Such injuries most often occur during obstetric, gynecologic, or urologic procedures, where inadvertent perforation or surgical disruption can result in significant morbidity. Recognition of

these etiologies is critical for targeted prevention, early diagnosis, and prompt intervention. The broad spectrum of causative mechanisms highlights the need for a comprehensive understanding of trauma dynamics and procedural risk factors in the assessment and management of bladder injury.


Epidemiology

Bladder injuries occur across a spectrum of trauma types, including blunt, penetrating, and iatrogenic mechanisms. Among traumatic bladder injuries, extraperitoneal ruptures are the most common, representing approximately 60% of cases, whereas intraperitoneal injuries account for around 30%, and combined injuries make up the remaining 10% [1]. The distribution reflects the typical mechanisms of injury, with extraperitoneal injuries frequently associated with pelvic fractures and intraperitoneal ruptures resulting from sudden increases in intravesical pressure. Iatrogenic bladder injuries are increasingly recognized, particularly in the context of surgical interventions. The bladder is the organ most frequently affected during obstetric and gynecologic procedures, including cesarean sections and hysterectomies. The reported incidence of such iatrogenic injuries is approximately 13.8 cases per 1000 procedures, highlighting a notable risk during pelvic surgeries [7]. These epidemiological patterns underscore the importance of early identification and tailored management strategies to reduce morbidity and optimize outcomes in both trauma and surgical settings.

Pathophysiology

The adult urinary bladder is situated in the anterior pelvis, with its dome covered by peritoneum and the bladder neck stabilized by fascial attachments and ligaments to the pelvic floor. This anatomy dictates the pattern and severity of bladder injuries. Intraperitoneal (IP) ruptures typically occur at the bladder dome, above the peritoneal reflection, whereas extraperitoneal (EP) ruptures occur below the peritoneal reflection, affecting the anterior or lateral walls of the bladder. These anatomical distinctions directly influence clinical presentation, complications, and management strategies. Bladder contusion represents a partial-thickness injury of the bladder wall, often resulting in a localized hematoma. Patients commonly present with gross hematuria, while imaging such as cystography reveals no contrast extravasation. This form of injury is generally self-limiting, as the structural integrity of the bladder remains largely preserved. In contrast, EP bladder rupture most frequently arises from rapid deceleration injuries, combining shearing forces and direct penetration by pelvic fracture fragments. Severe EP ruptures may result in urine extravasation into surrounding tissues, including the thighs, perineum, penis, or anterior abdominal wall. Studies indicate that 85% to 100% of bladder injuries occur in association with pelvic fractures [5]. IP bladder

rupture primarily affects the dome, which is the bladder's most vulnerable and least protected region. It usually results from a direct blow to a distended bladder, although deceleration forces can also contribute. Urine leaks into the peritoneal cavity, where absorption can lead to elevated blood urea nitrogen and creatinine levels, electrolyte disturbances, metabolic derangements, and reduced urine output. Combined EP and IP injuries are relatively uncommon, accounting for 5% to 8% of bladder trauma associated with pelvic fractures [3]. The pathophysiology highlights the importance of anatomical location, mechanism of injury, and associated trauma in determining both clinical outcomes and intervention strategies.

Fig. 1: Bladder Trauma.

History and Physical

The assessment of patients with suspected trauma follows a structured approach beginning with the primary survey, which prioritizes airway, breathing, circulation, disability, and exposure. This initial evaluation identifies life-threatening conditions and stabilizes the patient before further examination. Once the primary survey is complete, the secondary survey provides a comprehensive head-to-toe assessment. Findings during this stage may suggest bladder injury and include pelvic instability, suprapubic tenderness, abdominal and pelvic pain, blood at the urethral meatus, a high-riding prostate, and gross hematuria. Pelvic instability, particularly in the context of fractures, carries a high risk of massive internal hemorrhage and necessitates immediate stabilization, often with a pelvic binder, prior to definitive surgical management. Peritoneal signs such as rigidity, guarding, and rebound tenderness indicate potential intraperitoneal injury. While these findings may reflect a perforated viscus, they should also raise suspicion for intraperitoneal bladder rupture. The focused assessment with sonography in trauma (FAST) is a rapid, non-invasive method to detect free fluid in the pericardial, intra-abdominal, and pelvic compartments; however, it cannot differentiate between urine and blood. Careful genital examination

is essential, as the presence of blood at the urethral meatus warrants evaluation for urethral injury before the insertion of a catheter. Rectal examination revealing a high-riding prostate further supports concern for urethral disruption. Gross hematuria is the most consistent clinical indicator of bladder trauma, occurring in approximately 67% to 95% of cases [8]. These findings underscore the need for a systematic, multidisciplinary approach to the initial assessment of patients with potential bladder injury, integrating physical examination with adjunct imaging and procedural precautions.

Evaluation

The evaluation of bladder trauma requires a structured approach integrating laboratory testing and imaging to guide diagnosis and management. Initial laboratory studies should include a complete blood count, metabolic panel, coagulation profile, and urinalysis. These tests provide baseline data on the patient's hemodynamic status, renal function, and the presence of hematuria, which is a key clinical indicator of bladder injury. Laboratory findings assist in identifying associated complications, such as anemia from concurrent pelvic or abdominal bleeding and metabolic derangements from intraperitoneal urine absorption. Imaging plays a central role in confirming bladder trauma, particularly in hemodynamically stable patients. Indications for imaging include gross hematuria, blood at the urethral meatus, inability to void, microscopic hematuria in the context of a pelvic fracture, or penetrating trauma to the pelvis, lower abdomen, or buttocks. Retrograde cystography, performed either through conventional X-ray or computed tomography (CT), is the standard diagnostic modality. Both conventional cystography and CT cystography demonstrate comparable sensitivity and specificity for detecting bladder injuries, while intravenous contrast-enhanced CT with delayed phases is less reliable for identifying bladder ruptures [9].

Current European Association of Urology guidelines favor CT cystography over traditional X-ray cystography because of its rapid acquisition, ease of performance, and ability to evaluate other intra-abdominal injuries simultaneously. CT cystography also provides superior visualization of bony fragments within the bladder and associated pelvic fractures, enhancing preoperative planning [10]. Imaging patterns differ based on injury type. Extraperitoneal bladder trauma is characterized by contrast extravasation around the bladder base and, in complex cases with fascial disruption, may extend into the perineum, penis, thighs, or anterior abdominal wall. Intraperitoneal bladder trauma produces contrast extravasation into the peritoneal cavity, outlining bowel loops and filling paracolic gutters. Intraoperative assessment can be aided by instillation of methylene blue or indigo carmine, which confirms the presence of leakage and evaluates the integrity of bladder repair [9]. This structured

evaluation approach ensures accurate diagnosis, informs surgical planning, and reduces the risk of missed injuries and associated complications.

Treatment / Management

Management of bladder trauma is guided by the type of injury and the patient's overall stability, as outlined in the American Urological Association (AUA) guidelines. Intraperitoneal (IP) bladder rupture mandates surgical repair due to the high risk of intra-abdominal contamination and subsequent sepsis. In contrast, uncomplicated extraperitoneal (EP) bladder rupture may often be managed non-operatively with bladder drainage via an indwelling catheter. If urethral injury is identified on retrograde urethrography, suprapubic catheterization is indicated, either percutaneously or through an open approach, to bypass the injured urethra and allow urinary diversion while avoiding further trauma. Surgical repair of IP bladder injury begins with patient stabilization and evaluation for associated injuries. In hemodynamically stable patients with isolated IP injury, minimally invasive approaches such as diagnostic laparoscopy may be considered for repair. The bladder lumen is carefully inspected, hematomas within the bladder wall are generally left intact to preserve tamponade and reduce hemorrhage risk, foreign bodies are removed, and devitalized tissue is debrided. An indwelling catheter is placed prior to repair to allow bladder distension and facilitate watertight closure. The bladder is conventionally repaired in two layers using running absorbable sutures, ensuring full-thickness closure. Retrograde filling with saline or methylene blue allows identification of any leaks. A pelvic drain may be positioned in the perivesical space to monitor postoperative urine leakage. The abdominal wall and skin are then closed in standard fashion. Postoperative care includes broad-spectrum intravenous antibiotics for at least 24 hours, particularly in cases of penetrating injury. Drain output is monitored, and removal is appropriate once output is minimal. The indwelling catheter is typically maintained for 10 to 14 days, with a cystogram performed prior to removal to confirm bladder integrity [11].

Uncomplicated EP bladder rupture without urethral injury is generally treated conservatively with indwelling catheter drainage for 10 to 14 days, combined with prophylactic antibiotics. Repeat retrograde cystography is performed before catheter removal to verify healing. Surgical repair is indicated if extravasation persists beyond three months, if there are concomitant injuries such as vaginal or rectal trauma, if foreign bodies are present in the bladder wall, or if pelvic orthopedic interventions with hardware placement risk compromising bladder integrity [11]. This tailored approach, stratified by injury type, ensures optimal outcomes while minimizing unnecessary surgical intervention.

Prompt recognition and adherence to evidence-based management protocols reduce the risk of infection, urinary fistula formation, and other complications. Close postoperative monitoring, imaging confirmation of healing, and appropriate urinary diversion are essential components of comprehensive bladder trauma care, supporting both functional recovery and long-term urinary tract integrity.

Differential Diagnosis

Evaluation of a patient with suspected bladder trauma requires consideration of multiple differential diagnoses, as the clinical presentation may overlap with other genitourinary and pelvic injuries. Penile trauma should be considered in patients presenting with swelling, hematoma, or deformity of the penile shaft, particularly following blunt or straddle injuries. Testicular trauma may present with scrotal pain, swelling, or hematocoele, and can coexist with bladder injury in high-impact trauma. Vaginal trauma, particularly in female patients, may manifest with bleeding, pain, or lacerations, and can complicate evaluation and management of pelvic injuries. Urethral trauma is a critical differential, especially in the presence of blood at the urethral meatus, inability to void, or a high-riding prostate on rectal examination. Failure to recognize urethral injury before catheterization may exacerbate the injury. Pelvic fractures, including acetabular fractures, open-book disruptions, straddle injuries, or pelvic avulsion fractures, are commonly associated with bladder trauma and may obscure clinical findings or contribute to extraperitoneal urinary extravasation. Retroperitoneal hemorrhage should be considered in patients with hypotension or flank pain, as it may mimic or coexist with extraperitoneal bladder injury. Renal trauma must also be differentiated, as hematuria can originate from the kidneys rather than the bladder. Similarly, ureteral trauma may present with hematuria or delayed urine output and should be evaluated with imaging if bladder injury is suspected but findings are atypical. Comprehensive assessment using imaging studies such as CT cystography or intravenous contrast studies, combined with careful physical examination, is essential to distinguish bladder injury from these differential diagnoses. Accurate identification ensures appropriate management, reduces the risk of complications, and guides surgical or non-operative intervention based on the specific injury pattern [10][11].

Prognosis

The prognosis of bladder trauma depends on the type of injury, associated trauma, and timeliness of intervention. Patients with bladder injuries frequently present with multiple concomitant injuries, including pelvic fractures, abdominal organ damage, and vascular compromise, which significantly influence overall outcomes. A single-center retrospective study conducted at a level I trauma

center reported a mortality rate of 10.8% among patients with bladder rupture who underwent laparotomy for trauma [2]. Mortality is often related to associated injuries rather than the bladder rupture itself, highlighting the importance of comprehensive trauma management. Untreated bladder rupture carries a high risk of serious complications. Intraperitoneal urine leakage can result in chemical peritonitis, progressing to severe sepsis if not promptly addressed. Persistent extravasation may lead to fistula formation between the bladder and adjacent organs, including the bowel, vagina, or skin. Such complications prolong hospitalization, increase morbidity, and may necessitate additional surgical interventions. Timely recognition, accurate diagnosis through imaging and laboratory evaluation, and management tailored to the injury type are critical to minimizing these risks. Outcomes are generally favorable with appropriate intervention. Most patients regain normal bladder function following repair or conservative management. However, injuries involving the bladder neck, urethra, or pelvic floor muscles may result in long-term sequelae, including urinary incontinence. The severity and location of these injuries determine whether surgical reconstruction can restore continence. Functional recovery also depends on patient factors, associated trauma, and the quality of postoperative care. Overall, early intervention, adherence to established management protocols, and close follow-up are essential to optimize recovery and reduce the risk of persistent complications in patients with bladder trauma [11].

Complications

Bladder trauma and its surgical management carry a risk of several immediate and long-term complications. Urinary incontinence is one of the most significant functional sequelae, particularly in injuries involving the bladder neck, urethra, or pelvic floor muscles. Wound complications, such as dehiscence or persistent drainage, may occur after surgical repair; it is important to distinguish postoperative serous or purulent drainage from urinary leakage. Over-debridement during surgical repair can reduce bladder capacity, resulting in lower functional bladder volume and potential long-term voiding difficulties. Persistent urinary extravasation is a recognized complication of both conservative and operative management, particularly if catheter drainage is inadequate or repair is incomplete. Hemorrhage may arise intraoperatively or postoperatively, especially in the setting of pelvic fractures or disruption of the pelvic vasculature. Infected hematomas or retained fluid collections can lead to pelvic abscess formation, contributing to systemic infection and delayed recovery. Intra-abdominal infections, including peritonitis and sepsis, are more commonly associated with intraperitoneal ruptures, particularly if diagnosis or repair is delayed. Fistula formation may occur between the bladder and

adjacent structures, including the bowel, vagina, or skin, leading to persistent urinary leakage and requiring further surgical intervention. Urinary tract infections are common in patients with indwelling catheters or prolonged urinary extravasation. Functional symptoms, such as urinary urgency and frequency, may persist after injury or repair due to bladder wall fibrosis or altered compliance. The risk and severity of complications are closely related to the mechanism of injury, associated trauma, and timing of diagnosis and intervention. Early recognition, careful surgical technique, appropriate catheter management, and close postoperative monitoring are essential to minimize these adverse outcomes and optimize long-term bladder function [11][12].

Postoperative and Rehabilitation Care

Postoperative care following bladder trauma repair is essential to ensure adequate healing, prevent complications, and restore normal urinary function. Patients typically follow up with their surgeon within seven to ten days for wound assessment, staple or suture removal, and evaluation of early postoperative recovery. Wound inspection focuses on identifying signs of infection, dehiscence, or unexpected drainage. Persistent drainage must be carefully distinguished from urinary leakage, as misinterpretation may lead to unnecessary interventions. Indwelling urinary catheters are a cornerstone of postoperative management, providing continuous bladder drainage to reduce intravesical pressure and support tissue healing. Catheter removal is generally scheduled 10 to 14 days after surgery, provided that a repeat cystogram demonstrates no contrast extravasation and the patient successfully completes a voiding trial. In cases of intraperitoneal or uncomplicated extraperitoneal bladder repair, routine follow-up cystography is not indicated unless clinical signs suggest ongoing leakage, in accordance with the Eastern Association for the Surgery of Trauma (EAST) guidelines [11]. High-risk patients, including those undergoing non-operative management, those with comorbid conditions such as malnutrition or chronic steroid use, may require repeat imaging to confirm complete healing. Persistent urinary leaks typically resolve with extended catheter drainage, although prolonged leaks may require further intervention. Rehabilitation includes monitoring for urinary function, addressing pain management, and gradually resuming normal activities while avoiding strain on the pelvic region. Education on hygiene, signs of infection, and proper catheter care is crucial for reducing the risk of urinary tract infections and optimizing recovery. Long-term follow-up may be necessary in patients with complex injuries to evaluate bladder capacity, continence, and voiding efficiency, ensuring a return to normal daily function and minimizing long-term complications.

Consultations

Effective management of bladder trauma relies on a multidisciplinary approach that integrates expertise from multiple specialties to optimize outcomes. Trauma surgery plays a central role in the initial evaluation, stabilization, and operative repair of bladder injuries, particularly in patients with complex or life-threatening polytrauma. Trauma surgeons coordinate imaging, surgical planning, and postoperative monitoring to ensure timely intervention and minimize morbidity. Urology consultation is critical in both operative and non-operative management of bladder injuries. Urologists provide expertise in catheterization, surgical repair techniques, and management of complications such as persistent leaks, fistulas, or functional sequelae. They also guide follow-up imaging and determine the appropriate timing for catheter removal and voiding trials, ensuring restoration of normal bladder function. Orthopedic surgery is frequently involved in cases where bladder trauma occurs in association with pelvic fractures. Orthopedic specialists assess fracture patterns, determine stabilization strategies, and collaborate with urology to minimize further bladder injury during surgical fixation. Coordination is essential when hardware placement or pelvic reconstruction may affect bladder integrity. Radiology provides critical diagnostic support through imaging modalities such as CT cystography, conventional cystography, and ultrasonography. Radiologists assist in the identification of injury type, extent, and associated trauma, allowing precise operative planning and postoperative evaluation. Imaging follow-up is particularly important in high-risk patients or those managed non-operatively to ensure complete healing and detect complications early. Multidisciplinary collaboration ensures comprehensive care, reduces complication rates, and facilitates a structured pathway from initial trauma management to postoperative recovery, ultimately improving both functional and long-term outcomes in patients with bladder trauma [11][12].

Patient Education

Patient education plays a critical role in preventing bladder trauma, which can result from both blunt and penetrating mechanisms. Blunt injuries often arise from motor vehicle collisions (MVCs) and traffic-related accidents, while penetrating injuries typically result from gunshot wounds, stab wounds, or other violent encounters. Although bladder trauma is relatively uncommon, its consequences can be severe, making injury prevention an important public health objective. Research, though limited, has identified several strategies to reduce the incidence of these injuries through targeted educational and community interventions [12][13][14][15]. Prevention programs generally focus on three areas: reducing penetrating injuries related to violent crimes, promoting safe driving behaviors, and addressing alcohol or

substance use [16][12][17][13][14][15]. Penetrating injuries account for a small proportion of trauma cases, representing approximately 8.34% of patients seen at trauma centers according to the 2015 American College of Surgeons National Trauma Data Bank annual report. Despite this, reinjury remains a concern, with 3.5% of penetrating trauma patients experiencing repeat injuries. Notably, 30% of these patients sought care at a different hospital, increasing their risk of mortality (odds ratio 1.62, $p < 0.05$) [18]. Self-inflicted injuries were identified as the highest risk category for reinjury (odds ratio 2.66, $p < 0.05$) [18]. Community-based interventions targeting firearm-related injuries have demonstrated measurable success. For example, an urban prevention program led to nearly a 50% reduction in gun-related injuries among children in the intervention area, compared with an increase in a neighboring community without such programming [17].

Motor vehicle collisions remain a leading cause of blunt abdominal and pelvic trauma. Teens are a particularly vulnerable population due to high rates of distracted driving. Distracted driving education programs have been shown to improve awareness and behavior. One study reported that 93% of teens found the program comprehensive, 89% considered it relevant to teen driving issues, and 81% identified texting while driving as the leading cause of injury among peers [12]. These findings emphasize the value of age-targeted, behavior-specific educational interventions in reducing injury risk. Alcohol and substance use also contribute significantly to trauma risk. Since the 2006 mandate from the American College of Surgeons Committee on Trauma, all Level I trauma centers have screened patients for alcohol use upon admission. High-risk behaviors are prevalent among these patients, with 77% reporting dangerous driving, 40% engaging in violent behavior, and 19% reporting suicidal ideation within the past year [19]. Motivational interviewing and brief counseling interventions have been shown to reduce substance use, although follow-up adherence remains a challenge [13][15]. Despite this, even brief interventions result in measurable reductions in substance use over three, six, and twelve months post-discharge [15]. Proper patient education, community outreach, and public health initiatives can meaningfully reduce the incidence of both MVC-related and penetrating injuries. By focusing on high-risk populations and addressing behavioral risk factors such as distracted driving, alcohol, and substance use, these programs contribute to the prevention of bladder trauma and improve long-term safety outcomes for the community.

Other Issues

Bladder injuries are relatively uncommon and can easily be missed if imaging is not performed correctly, leading to serious morbidity or unnecessary

interventions. One common but discouraged practice involves clamping a Foley catheter and allowing passive bladder filling before CT imaging. The Eastern Association for the Surgery of Trauma (EAST) guidelines advise against this method, as bladder distension may be unreliable depending on urine production at the time of imaging [11]. The American College of Radiology recommends actively filling the bladder with 300 to 400 mL of contrast through the Foley catheter prior to CT cystography to ensure adequate visualization of the bladder wall and potential extravasation [20]. Retrospective studies indicate that only 59% of patients with bladder trauma received appropriate bladder imaging on initial presentation [21]. Inadequate imaging can result in misdiagnosis; one level I trauma center reported that 13% of patients evaluated with standard CT scans without cystography underwent unnecessary surgical exploration due to missed injuries [22]. Adherence to proper imaging protocols, with radiology consultation, is therefore essential to prevent missed or delayed diagnoses, which may result in peritonitis, sepsis, or prolonged hospitalization. Additionally, evidence suggests that primary repair of extraperitoneal bladder injuries during operations for other indications can reduce ICU stay, overall hospitalization duration, and postoperative complications [23]. These findings highlight the importance of early, accurate imaging and timely intervention in optimizing outcomes for bladder trauma patients.

Enhancing Healthcare Team Outcomes

Management of bladder trauma relies on coordinated interprofessional collaboration among trauma surgeons, urologists, radiologists, orthopedic surgeons, and nursing staff. Genitourinary injuries can present with overlapping clinical signs but require different interventions depending on the organ involved. Effective communication of examination findings is crucial to guide appropriate management. For example, the presence of blood at the urethral meatus in a male patient necessitates prompt urethral evaluation before Foley catheter placement. Failure to communicate and act on this finding may result in iatrogenic urethral injury and severe morbidity. Radiology plays a critical role in guiding appropriate imaging, including CT cystography, to confirm bladder injury and determine the type and extent of rupture. Trauma surgeons can manage simple extraperitoneal and intraperitoneal bladder injuries; however, complex injuries often require consultation with urologists to plan surgical repair and coordinate perioperative care [24]. Nursing staff are integral to monitoring urine output, catheter function, and early signs of complications, while orthopedic surgeons provide input when bladder trauma occurs in conjunction with pelvic fractures or operative interventions. A coordinated team approach ensures timely evaluation, reduces the risk of missed or misdiagnosed injuries, and improves functional

and surgical outcomes. Standardized protocols, clear communication of physical findings, and interdisciplinary consultation foster safer, more efficient care pathways. By integrating expertise across specialties, trauma teams can optimize recovery, minimize complications, and enhance overall patient outcomes in bladder trauma management [24].

Conclusion:

Bladder trauma, though relatively rare, poses significant diagnostic and therapeutic challenges due to its frequent association with multisystem injuries. Timely identification and classification into intraperitoneal, extraperitoneal, or combined patterns are critical for guiding appropriate management. Intraperitoneal ruptures necessitate surgical intervention to prevent peritonitis and sepsis, whereas most extraperitoneal injuries can be managed conservatively with catheter drainage. Imaging, particularly CT cystography, plays a pivotal role in accurate diagnosis and preoperative planning. Multidisciplinary collaboration among trauma surgeons, urologists, radiologists, and orthopedic specialists ensures comprehensive care and minimizes complications such as urinary fistulas, infections, and long-term functional deficits. Adherence to evidence-based protocols, meticulous surgical technique, and structured postoperative follow-up significantly improve patient outcomes. Preventive strategies, including public health initiatives targeting road safety and violence reduction, further contribute to reducing the incidence of bladder trauma. Overall, early recognition and coordinated management remain the cornerstone of successful treatment and recovery.

References:

1. Bryk DJ, Zhao LC. Guideline of guidelines: a review of urological trauma guidelines. *BJU international*. 2016 Feb;117(2):226-34. doi: 10.1111/bju.13040.
2. Pereira BM, de Campos CC, Calderan TR, Reis LO, Fraga GP. Bladder injuries after external trauma: 20 years experience report in a population-based cross-sectional view. *World journal of urology*. 2013 Aug;31(4):913-7. doi: 10.1007/s00345-012-0871-8.
3. Gomez RG, Ceballos L, Coburn M, Corriere JN Jr, Dixon CM, Lobel B, McAninch J. Consensus statement on bladder injuries. *BJU international*. 2004 Jul;94(1):27-32.
4. Deibert CM, Spencer BA. The association between operative repair of bladder injury and improved survival: results from the National Trauma Data Bank. *The Journal of urology*. 2011 Jul;186(1):151-5. doi: 10.1016/j.juro.2011.03.002.
5. Zaid UB, Bayne DB, Harris CR, Alwaal A, McAninch JW, Breyer BN. Penetrating Trauma to the Ureter, Bladder, and Urethra.

Current trauma reports. 2015 Jun 1:1(2):119-124

6. Anderson RE, Keihani S, Moses RA, Nocera AP, Selph JP, Castillejo Becerra CM, Baradaran N, Glavin K, Broghammer JA, Arya CS, Sensenig RL, Rezaee ME, Morris BJ, Majercik S, Hewitt T, Burks FN, Schwartz I, Elliott SP, Luo-Owen X, Mukherjee K, Thomsen PB, Erickson BA, Miller BD, Santucci RA, Allen L, Norwood S, Fick CN, Smith BP, Piotrowski J, Dodgion CM, DeSoucy ES, Zakaluzny S, Kim DY, Breyer BN, Okafor BU, Askari R, Lucas JW, Simhan J, Khabiri SS, Nirula R, Myers JB. Current Management of Extraperitoneal Bladder Injuries: Results from the Multi-Institutional Genito-Urinary Trauma Study (MiGUTS). *The Journal of urology*. 2020 Sep;204(3):538-544. doi: 10.1097/JU.0000000000001075.
7. Frankman EA, Wang L, Bunker CH, Lowder JL. Lower urinary tract injury in women in the United States, 1979-2006. *American journal of obstetrics and gynecology*. 2010 May;202(5):495.e1-5. doi: 10.1016/j.ajog.2010.01.013.
8. Mundy AR, Andrich DE. Pelvic fracture-related injuries of the bladder neck and prostate: their nature, cause and management. *BJU international*. 2010 May;105(9):1302-8. doi: 10.1111/j.1464-410X.2009.08970.x.
9. Cocolin F, Moore EE, Kluger Y, Biffl W, Leppaniemi A, Matsumura Y, Kim F, Peitzman AB, Fraga GP, Sartelli M, Ansaloni L, Augustin G, Kirkpatrick A, Abu-Zidan F, Wani I, Weber D, Pikoulis E, Larrea M, Arvieux C, Manchev V, Reva V, Coimbra R, Khokha V, Mefire AC, Ordonez C, Chiarugi M, Machado F, Sakakushev B, Matsumoto J, Maier R, di Carlo I, Catena F, WSES-AAST Expert Panel. Kidney and uro-trauma: WSES-AAST guidelines. *World journal of emergency surgery : WJES*. 2019;14():54. doi: 10.1186/s13017-019-0274-x.
10. Chan DP, Abujudeh HH, Cushing GL Jr, Novelline RA. CT cystography with multiplanar reformation for suspected bladder rupture: experience in 234 cases. *AJR. American journal of roentgenology*. 2006 Nov;187(5):1296-302
11. Yeung LL, McDonald AA, Como JJ, Robinson B, Knight J, Person MA, Lee JK, Dahm P. Management of blunt force bladder injuries: A practice management guideline from the Eastern Association for the Surgery of Trauma. *The journal of trauma and acute care surgery*. 2019 Feb;86(2):326-336. doi: 10.1097/TA.0000000000002132.
12. Stewart TC, Harrington J, Batey B, Merritt NH, Parry NG. From focus groups to production of a distracted driving video: Using teen input to drive injury prevention programming. *The journal of trauma and acute care surgery*. 2015 Sep;79(3 Suppl 1):S42-7. doi: 10.1097/TA.0000000000000776.
13. Yonas M, Baker D, Cornwell EE 3rd, Chang D, Phillips J, Paradise J, Paradise M, Sutton E, Elihu A. Readiness to change and the role of inpatient counseling for alcohol/substance abusing youth with major trauma. *The Journal of trauma*. 2005 Aug;59(2):466
14. Gentilello LM, Ebel BE, Wickizer TM, Salkever DS, Rivara FP. Alcohol interventions for trauma patients treated in emergency departments and hospitals: a cost benefit analysis. *Annals of surgery*. 2005 Apr;241(4):541
15. Field CA, Von Sternberg K, Velasquez MM. Randomized Trial of Screening and Brief Intervention to Reduce Injury and Substance Abuse in an urban Level I Trauma Center. *Drug and alcohol dependence*. 2020 Mar 1:208():107792. doi: 10.1016/j.drugalcdep.2019.107792.
16. Mancino M, Cunningham MR, Davidson P, Fulton RL. Identification of the motor vehicle accident victim who abuses alcohol: an opportunity to reduce trauma. *Journal of studies on alcohol*. 1996 Nov;57(6):652-8
17. Durkin MS, Kuhn L, Davidson LL, Laraque D, Barlow B. Epidemiology and prevention of severe assault and gun injuries to children in an urban community. *The Journal of trauma*. 1996 Oct;41(4):667-73
18. Parreco J, Sussman MS, Crandall M, Ebler DJ, Lee E, Namias N, Rattan R. Nationwide Outcomes and Risk Factors for Reinjury After Penetrating Trauma. *The Journal of surgical research*. 2020 Jun;250():59-69. doi: 10.1016/j.jss.2019.12.029.
19. Field CA, Claassen CA, O'Keefe G. Association of alcohol use and other high-risk behaviors among trauma patients. *The Journal of trauma*. 2001 Jan;50(1):13-9
20. Quagliano PV, Delair SM, Malhotra AK. Diagnosis of blunt bladder injury: A prospective comparative study of computed tomography cystography and conventional retrograde cystography. *The Journal of trauma*. 2006 Aug;61(2):410-21; discussion 421-2
21. Barnard J, Overholt T, Hajiran A, Crigger C, Jessop M, Knight J, Morley C. Traumatic Bladder Ruptures: A Ten-Year Review at a

Level 1 Trauma Center. Advances in urology. 2019;2019():2614586. doi: 10.1155/2019/2614586.

22. Myers JB, Taylor MB, Brant WO, Lowrance W, Wallis MC, Presson AP, Morris SE, Nirula R, Stevens MH. Process improvement in trauma: traumatic bladder injuries and compliance with recommended imaging evaluation. *The journal of trauma and acute care surgery*. 2013 Jan;74(1):264-9. doi: 10.1097/TA.0b013e318270df2b.

23. Johnsen NV, Young JB, Reynolds WS, Kaufman MR, Milam DF, Guillamondegui OD, Dmochowski RR. Evaluating the Role of Operative Repair of Extraperitoneal Bladder Rupture Following Blunt Pelvic Trauma. *The Journal of urology*. 2016 Mar;195(3):661-5. doi: 10.1016/j.juro.2015.08.081.

24. Urry RJ, Clarke DL, Bruce JL, Laing GL. The incidence, spectrum and outcomes of traumatic bladder injuries within the Pietermaritzburg Metropolitan Trauma Service. *Injury*. 2016 May;47(5):1057-63. doi: 10.1016/j.injury.2016.01.020.