

Laboratory Evaluation of Infertility-An Updated Review

Jamal Yahya Abu Haydar ⁽¹⁾, Badr Amer Alhrbi ⁽²⁾, Samar Ahmad Breagesh ⁽³⁾, Noor Hassan Almubarak ⁽⁴⁾, Khlood Abdu Ali Dagreery ⁽⁵⁾, Ahmed Munawwar Eid Al ⁽⁶⁾, Areej Saud Albalaw ⁽⁷⁾, Shaheerah Mashial Alsulami ⁽⁸⁾, Khaled Abdulrahman Mohammed Ali ⁽⁹⁾, Alqasim Ali Ahmed Alneami ⁽¹⁰⁾, Abdulaziz Muqbil Faleh Alharbi ⁽¹¹⁾, Aimn Mohammed Abdu Alsadi ⁽¹²⁾

(1) Riyadh Long Term Care Hospital, Ministry of Health, Saudi Arabia,

(2) Imam Abdulrahman Al Faisal Hospital Laboratory, Ministry of Health, Saudi Arabia,

(3) Riyadh Regional lab, Ministry of Health, Saudi Arabia,

(4) King Faisal General Hospital, Ministry of Health, Saudi Arabia,

(5) KSA, Ministry of Health, Jazan Regional Laboratory, Ministry of Health, Saudi Arabia,

(6) Maternity and Children's Hospital in Buraydah, Maternity and Children's Hospital in Buraydah, Ministry of Health, Saudi Arabia,

(7) King Salman Medical City, Madina General Hospital, Ministry of Health, Saudi Arabia,

(8) Al Kamel General Hospital, Ministry of Health, Saudi Arabia,

(9) Yamamah Hospital, Ministry of Health, Saudi Arabia,

(10) KSA, Ministry of Health, Jazan Regional Laboratory, Saudi Arabia,

(11) Al-Qassim, Ministry of Health, Saudi Arabia,

(12) KSA, Ministry of Health, Alarad Primary Health Care Center, Saudi Arabia

Abstract

Background: Infertility is a significant global public health issue affecting approximately 15% of couples worldwide. Female fertility declines with advancing age due to progressive reduction in ovarian reserve and oocyte quality, while male, anatomical, endocrine, genetic, and environmental factors further contribute to reproductive failure. Accurate laboratory evaluation is central to identifying the underlying causes and guiding effective management.

Aim: This review aims to provide an updated and comprehensive overview of the laboratory evaluation of infertility, emphasizing hormonal, semen, genetic, and biochemical assessments while highlighting methodological considerations and clinical relevance.

Methods: A narrative review of current laboratory practices in infertility evaluation was conducted. The article synthesizes evidence on endocrine testing, ovarian reserve assessment, ovulatory function, semen analysis, genetic screening, immunoassay methodologies, and interfering factors affecting test accuracy.

Results: Laboratory evaluation plays a pivotal role in infertility diagnosis, particularly through assessment of the hypothalamic–pituitary–ovarian axis, ovarian reserve markers (AMH, FSH, AFC), luteal progesterone levels, and comprehensive semen analysis. Immunoassays remain the mainstay of hormone testing, although interference from heterophilic antibodies, cross-reactivity, and preanalytical variables may compromise results. Advanced techniques such as LC–MS/MS improve analytical accuracy in selected cases. Genetic testing and quality control mechanisms further enhance diagnostic precision and clinical decision-making.

Conclusion: An integrated laboratory approach, supported by rigorous quality control and awareness of assay limitations, is essential for accurate infertility evaluation. Tailored laboratory investigations enable personalized treatment strategies and improved reproductive outcomes.

Key Words: Infertility, ovarian reserve, semen analysis, immunoassays, reproductive hormones, laboratory evaluation.

Introduction

Infertility is characterized by the inability to achieve conception after 12 months of regular, unprotected sexual intercourse in women under 35 years of age, or after six months in women over 35 [1]. Globally, infertility affects approximately 15% of couples, representing a significant public health concern. Female fecundity begins a gradual decline

around the age of 32, with a more pronounced decrease after 37, primarily due to the age-related reduction in functional ovarian reserve. This decline is associated with an increased incidence of infertility and spontaneous pregnancy loss, which is largely attributed to a higher likelihood of chromosomal nondisjunction in older oocytes [2]. In women aged 40 years and above, initiating an infertility evaluation

at an earlier stage is often justified. Additional indications for infertility assessment include irregular menstrual cycles, male factor infertility, advanced endometriosis, Müllerian duct anomalies, and other genital tract conditions such as a history of pelvic inflammatory disease [1]. Fertility preservation strategies, including oocyte or embryo cryopreservation for females and sperm cryopreservation for males, should also be incorporated into counseling for patients undergoing gonadotoxic therapies, such as cancer treatment [3]. The quantity and quality of oocytes are central determinants of female reproductive potential. The oocyte pool reaches its peak during the fetal stage, with an estimated 600,000 oocytes present at birth, which progressively diminishes throughout a woman's lifespan [4]. Maternal age serves as a key indicator of both oocyte quantity and quality, representing one of the most critical prognostic factors in assisted reproductive technologies [5]. The oocyte maturity index, which evaluates morphological and physiological attributes, can provide insight into oocyte competence and may serve as a predictive tool for pregnancy outcomes [6]. Understanding these age-related changes and implementing early assessment and fertility preservation strategies are essential for optimizing reproductive success and guiding clinical decision-making in infertility management.

Etiology and Epidemiology

Infertility represents a significant global health concern, with particularly high prevalence in developed countries, where delayed childbearing has become increasingly common. Advances in assisted reproductive technologies have allowed millions of couples to achieve conception despite underlying reproductive challenges [7]. The first successful birth following in vitro fertilization (IVF) occurred in 1978, marking a pivotal milestone in reproductive medicine. Since then, continuous improvements in laboratory and clinical protocols have led to pregnancy rates exceeding 50% per embryo transfer, significantly enhancing reproductive outcomes for affected couples [8]. The etiology of infertility is broadly classified into four categories: female factor, male factor, combined factor, and unexplained infertility [1]. The prevalence of female, male, and combined causes is generally comparable, ranging between 2% and 30% each, while approximately 10% to 20% of cases remain unexplained despite comprehensive evaluation [9]. Female-related infertility can be further divided into anatomical causes, including cervical, uterine, or tubal abnormalities, and functional causes, such as ovarian, pituitary, or hypothalamic dysfunction. Polycystic ovarian syndrome (PCOS) is a leading contributor to ovulatory disorders, accounting for approximately 70% of cases of anovulation [10]. Advanced maternal age is a well-established factor that negatively

impacts fertility. Women of older reproductive age experience prolonged time to conception and face increased risks of chromosomal anomalies, spontaneous miscarriage, and congenital defects [11]. Environmental exposures may also influence fertility, although the evidence varies in strength and consistency. Substances such as tobacco smoke, excessive alcohol, and certain industrial or environmental toxins have been demonstrated to impair reproductive function in both men and women [12]. Collectively, these etiological and epidemiological factors highlight the multifactorial nature of infertility and underscore the importance of individualized assessment and intervention to optimize reproductive outcomes.

Pathophysiology

Evaluating infertility requires a systematic approach aimed at identifying the underlying etiology. This begins with a comprehensive clinical history and a detailed physical examination to detect signs of hypothalamic, pituitary, thyroid, uterine, tubal, and ovulatory dysfunction. Essential aspects of the history include menstrual patterns, cycle regularity, galactorrhea, acne, hirsutism, prior sexually transmitted infections, and lifestyle factors that may impact fertility. Physical assessment incorporates measurement of body mass index, blood pressure, and a focused breast, abdominal, and pelvic examination. Imaging, particularly baseline pelvic ultrasound, is integral to evaluate the morphology and structure of the uterus, cervix, and ovaries [1]. Infertility workup encompasses both anatomical and functional considerations; the following discussion emphasizes functional evaluation in the female patient. A central component of functional assessment is the evaluation of ovarian reserve, which reflects both the quantity and, indirectly, the reproductive potential of oocytes. Maternal age remains the most critical determinant of fertility [2]. Functional ovarian reserve (FOR) can be assessed through biomarkers such as anti-Müllerian hormone (AMH) and basal follicle-stimulating hormone (FSH) measured during early menses. AMH is secreted by granulosa cells of primary, secondary, preantral, and early antral follicles and provides an estimate of the remaining follicular pool [13]. However, AMH does not provide information about oocyte quality, which can only be evaluated morphologically following oocyte retrieval [14]. While AMH predicts ovarian responsiveness to gonadotropin stimulation, it does not directly predict pregnancy or live birth outcomes. Women with AMH levels above 1 ng/mL generally exhibit favorable response to stimulation, although conception remains possible in those with lower levels, indicating that AMH should not be used as a sole prognostic biomarker [15],[16]. AMH remains stable throughout the menstrual cycle but may be suppressed by exogenous hormonal therapy [13].

FSH, measured on cycle days 2 through 5, serves as an additional marker of ovarian reserve, reflecting pituitary function under negative estrogen feedback. As the ovarian follicle pool declines with age, estradiol production diminishes, leading to compensatory elevation of FSH [1]. Antral follicle count (AFC), determined via ultrasound, offers a further assessment of ovarian reserve by quantifying visible follicles in both ovaries. While AFC is useful for predicting ovarian response to stimulation, its variability across cycles renders it less reliable than AMH or FSH [1],[17]. Ovulation, the release of a dominant Graafian follicle from the ovary, is essential for successful conception and is regulated by a complex hormonal feedback loop. Pulsatile gonadotropin-releasing hormone secretion from the hypothalamus stimulates the pituitary to release FSH and luteinizing hormone (LH). FSH promotes follicular growth, while LH facilitates androgen synthesis, working within the two-cell, two-gonadotropin model [18],[19]. In this framework, FSH receptors are expressed on granulosa cells, whereas LH receptors are primarily on theca cells. LH-induced androgen production in theca cells is subsequently aromatized into estrogens by granulosa cells under FSH stimulation. This tightly regulated hormonal interplay ensures the maturation of oocytes and the establishment of an optimal endocrine environment for fertilization. Understanding these physiological processes is critical for interpreting abnormalities in ovulatory function and guiding interventions in infertile patients.

Specimen Requirements and Procedure

Proper specimen collection is essential for accurate evaluation of reproductive hormones and semen parameters in the assessment of infertility. Venipuncture is the standard method for obtaining blood specimens to measure luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, anti-Müllerian hormone (AMH), estradiol, and progesterone [20]. Hand hygiene is the initial critical step in reducing contamination, followed by thorough skin disinfection using alcohol, chlorhexidine, or povidone-iodine solutions [21]. The phlebotomist identifies suitable veins in the cubital fossa, typically the cephalic, basilic, median cubital, or median antecubital veins. To facilitate vein dilation, a tourniquet is applied for less than 60 seconds at moderate pressure (approximately 60 mm Hg). Alternatively, a transilluminating device using infrared light may be employed to visualize veins more effectively. The dorsal hand veins can serve as alternative sites, though they tend to be more mobile and insertion may cause increased discomfort [21]. Venipuncture can be performed using either a straight needle or a butterfly needle. The butterfly needle provides stability through its wings, which can be secured with adhesive tape to maintain proper placement. The needle should enter the vein at an angle less than 30 degrees to minimize vessel trauma.

Blood collection can be achieved using a piston syringe or an evacuated tube system. The evacuated tube system is preferred due to its closed design and safety, facilitating collection into color-coded tubes containing appropriate additives. To reduce patient discomfort, distraction techniques can be employed, and topical anesthetics such as lidocaine or prilocaine may be applied [21]. Complications are uncommon, occurring in less than 3% of procedures, and include superficial phlebitis, localized hematomas, bruising, prolonged bleeding, arterial puncture, cellulitis, or rarely aneurysm formation [21].

Semen analysis is another essential diagnostic procedure in infertility assessment. Men are instructed to abstain from ejaculation for three to seven days prior to sample collection. The specimen is collected by masturbation into a sterile container and must be examined within one hour to maintain validity [22]. Patients should empty their bladder before collection to reduce contamination, and a minimum of two separate specimens, collected at least three days apart, is recommended to account for variability in sperm parameters [23]. Extended periods of abstinence increase semen volume but may reduce motility, which is an important consideration for accurate assessment [22]. In both venipuncture and semen collection, adherence to proper procedural protocols ensures reliable results and minimizes the risk of preanalytical errors. Careful patient instruction, appropriate timing, and correct handling of specimens are crucial to optimize the diagnostic yield for reproductive endocrinology and infertility evaluation.

Diagnostic Tests

Contemporary evaluation of infertility has shifted from traditional methods such as basal body temperature monitoring and postcoital cervical aspiration to more precise laboratory and imaging assessments [24]. Current diagnostic protocols focus on five principal components critical to fertility: the pituitary gland, ovarian function, fallopian tube patency, uterine structure, and semen quality. Laboratory investigations primarily address three of these areas: pituitary and ovarian endocrine function, male gamete quality, and genetic predispositions that may impact reproductive outcomes. Radiologic imaging complements these analyses by assessing structural anomalies that may interfere with conception. Assessment of ovulatory function is central to the evaluation of female infertility. Women with menstrual cycles ranging between 25 and 35 days and exhibiting minimal variation, typically less than three days per cycle, are generally considered ovulatory. Deviations from this pattern may suggest impaired ovulation, necessitating further evaluation. The most reliable laboratory method involves measuring serum progesterone levels during the luteal phase, often after cycle day 18, with levels exceeding 3 ng/mL indicative of ovulatory activity [1][10]. Additionally, monitoring the luteinizing

hormone (LH) surge through serial serum measurements or ovulation predictor kits can provide corroborative evidence, although elevated baseline LH in conditions such as polycystic ovarian syndrome (PCOS) may yield false-positive results [25][26]. While basal body temperature monitoring has been historically used to infer ovulation through a thermal shift of at least 0.5°C, its reliability is limited, and the method is largely supplanted by biochemical assessment [25].

The International Federation of Gynecology and Obstetrics (FIGO) has introduced the HyPO-P classification system to categorize ovulatory disorders, superseding the World Health Organization 1973 classification. This framework divides disorders into four types: Type I encompasses hypothalamic etiologies, including genetic, autoimmune, iatrogenic, and neoplastic conditions; Type II involves pituitary dysfunction from functional, inflammatory, traumatic, or vascular causes; Type III includes ovarian pathologies, both idiopathic and endocrine-related; and Type IV is reserved for PCOS [27]. Evaluation of ovarian reserve, representing oocyte quantity, can be performed via serum anti-Müllerian hormone (AMH) or basal FSH levels, or by antral follicle count (AFC) via transvaginal ultrasonography [1]. Oocyte quality, however, is not assessable until retrieval and microscopic examination following ovarian stimulation [28]. Age remains the most reliable predictor of oocyte quality, with advanced maternal age correlating with diminished developmental potential [5]. AMH provides a cycle-independent measure of ovarian reserve, with levels below 1 ng/mL typically suggesting diminished ovarian reserve (DOR), and values under 0.5 ng/mL predictive of poor response in assisted reproduction, yielding fewer than three oocytes per cycle [29][30]. Conversely, AMH levels exceeding 3.5 ng/mL indicate robust ovarian responsiveness but elevate the risk of ovarian hyperstimulation syndrome (OHSS) [30].

Basal FSH measurement on cycle days 2–5, alongside estradiol assessment to prevent misinterpretation from elevated early-phase estradiol, serves as a critical marker of ovarian reserve. Persistently elevated FSH levels (>10 IU/L) indicate DOR and predict a suboptimal response to ovarian stimulation. Premature elevation of estradiol (>80 pg/mL) can also reflect early follicular recruitment, reinforcing the need for repeated evaluation to confirm findings [1][30]. Endocrinological assessment extends to the broader hypothalamic-pituitary-ovarian (HPO) axis and associated comorbidities, including diabetes and thyroid dysfunction. Hypothyroidism, often reflected by TSH levels exceeding 4 mIU/mL, correlates with ovulatory disruption and increased miscarriage risk, warranting levothyroxine therapy even in the presence of normal free thyroxine. Hyperthyroidism

similarly impacts reproductive function, altering gonadotropin secretion and androgen-to-estrogen conversion [31]. In women with PCOS, androgen profiling—including total testosterone, sex hormone-binding globulin, and calculated free testosterone—is essential [32]. Screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) and Cushing syndrome may be indicated, employing urine cortisol collection, dexamethasone suppression, or salivary cortisol assays [33]. Hyperprolactinemia should be evaluated selectively in women with oligomenorrhea, amenorrhea, or galactorrhea and is often secondary to hypothyroidism [34][37]. Male endocrine evaluation may include a human chorionic gonadotropin (hCG) stimulation test to assess Leydig cell function, with failure to increase testosterone beyond 150 ng/dL indicating primary hypogonadism [38][39].

Semen analysis is conducted with two separate specimens, ideally collected after 3–7 days of abstinence, evaluating volume, pH, sperm concentration, total count, motility, progressive motility, morphology, and agglutination [1][23]. Detection of azoospermia necessitates further investigation to distinguish obstructive from non-obstructive etiologies, including post-ejaculate urine analysis and evaluation for genetic disorders such as Kartagener syndrome or cystic fibrosis in obstructive cases [40][41]. Non-obstructive azoospermia warrants hormonal assessment, testicular biopsy, or sperm retrieval techniques [40][42]. Varicocele diagnosis is confirmed via ultrasonography where clinically indicated [44]. Exogenous testosterone suppresses endogenous gonadotropins, potentially causing oligozoospermia or azoospermia [43]. Genetic evaluation complements laboratory testing, particularly in preconception counseling and infertility with potential hereditary contributions. Expanded carrier screening assesses autosomal recessive mutations in women, with subsequent testing of male partners or donors if positive. Couples identified as carriers of the same mutation may pursue preimplantation genetic testing or prenatal diagnostics, including chorionic villus sampling or amniocentesis. Disorders relevant to reproductive assessment include cystic fibrosis, Turner syndrome, Kallmann syndrome, Y-chromosome microdeletions, chromosomal aberrations, and Kartagener syndrome [45]. Professional guidelines recommend karyotyping selectively in recurrent pregnancy loss, and targeted carrier screening for conditions such as cystic fibrosis, spinal muscular atrophy, Fragile X syndrome, and hemoglobinopathies [46]. Fragile X screening is particularly indicated in women with irregular cycles and family histories suggestive of premature ovarian insufficiency or intellectual disability. Expanded carrier screening is advised in populations with elevated prevalence of specific conditions, such as Ashkenazi Jews [46]. While laboratory diagnostics form the foundation of

infertility evaluation, imaging may be warranted to assess structural abnormalities. Hysterosonography or hysterosalpingo-contrast sonography provides detailed visualization of uterine and fallopian tube pathology, complementing the functional assessment derived from laboratory analysis [1][47]. Combined laboratory and imaging strategies enable a comprehensive understanding of infertility etiology, guiding personalized therapeutic interventions.

Testing Procedures

Immunoassays are the predominant methodology for measuring reproductive hormones in clinical laboratories [48]. These assays rely on the specific interaction between antibodies and antigens to detect the presence or concentration of target molecules in biological specimens. The specificity of antibody-antigen binding enables accurate detection even in complex biological matrices such as serum, plasma, or seminal fluid. Immunoassays differ in design, detection mechanisms, and the manner in which assay reagents interact with the sample, allowing flexibility in addressing various clinical and laboratory needs [49]. Heterogeneous immunoassays require the physical separation of the antibody-analyte complex from unbound sample components before signal detection. This separation can be achieved through methods such as precipitation, cross-linking with secondary antibodies, or immobilization on a solid phase. Once unbound materials are removed via washing steps, detection reagents are added to quantify the analyte [50]. In contrast, homogeneous immunoassays do not require physical separation. These assays can distinguish between bound and free analytes within the reaction mixture, streamlining the procedure and reducing assay time.

Immunoassays also differ in the principles governing signal generation. Competitive immunoassays limit available antigen-binding sites, allowing the endogenous analyte and a labeled analog to compete for antibody binding. The detectable signal is inversely proportional to the concentration of the analyte, such that higher analyte levels result in a lower signal [51]. Noncompetitive immunoassays, by contrast, provide an excess of antibody-binding sites. These assays produce a signal directly proportional to analyte concentration, allowing for a more intuitive interpretation of results [52]. A specific subset, sandwich immunoassays, employs two antibodies that bind distinct sites on the analyte. A capture antibody immobilized on a solid surface extracts the analyte from the sample, while a labeled detection antibody binds to a different epitope. The analyte is thus “sandwiched” between the antibodies, producing a signal that increases with analyte concentration [53]. Automated immunoassays for testosterone and estradiol are generally reliable for use in healthy adult men and women. However, their accuracy and precision are insufficient when assessing populations with low steroid hormone

levels, such as children or adults with hypogonadism or other endocrine disorders [54]. The Endocrine Society recommends the use of highly sensitive assays, including liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), in such cases [55]. LC-MS/MS provides enhanced accuracy, reduced detection limits, and superior analytical specificity compared to conventional immunoassays. These techniques, however, necessitate highly trained personnel and substantial laboratory infrastructure, which may limit their routine use in standard clinical settings [56].

Measurement of free testosterone requires additional consideration, as equilibrium dialysis or ultrafiltration performed in specialized reference laboratories offers the most accurate assessment [57]. These methods account for the proportion of testosterone that is unbound and biologically active, which is not reflected in total testosterone assays. Accurate quantification of free testosterone is critical in evaluating hypogonadism, infertility, or androgen-related disorders in both men and women. Overall, immunoassays remain the cornerstone of endocrine testing in reproductive medicine due to their specificity, adaptability, and scalability. Nonetheless, emerging technologies such as mass spectrometry provide essential improvements in sensitivity and precision, particularly in populations with low hormone concentrations or atypical endocrine profiles. The integration of these advanced methodologies ensures that clinical laboratories can provide reliable, reproducible, and clinically actionable hormone measurements for infertility evaluation and broader reproductive health assessment.

Interfering Factors

Immunoassays are extensively utilized in clinical laboratories for the measurement of reproductive hormones due to their high specificity and sensitivity [58]. However, these assays are vulnerable to interferences that may compromise accuracy, potentially leading to falsely elevated or suppressed results. The susceptibility to interference depends on the type of immunoassay employed, whether competitive or sandwich, as well as the specific mechanisms by which interfering substances interact with assay components [58]. Understanding these factors is crucial to ensuring reliable fertility hormone assessment. Heterophilic antibodies represent one of the most significant sources of interference in immunoassays for fertility testing [59]. These antibodies are multi-specific and can bind indiscriminately to various elements within the assay. They may interact with endogenous analytes in the patient sample, labeled analytes used for detection, or antibodies incorporated into the assay, including capture and signal antibodies. Heterophilic antibodies can also bind to assay conjugates and other components of the detection system, producing false-positive or false-negative results [60]. Their presence

can lead to clinically misleading interpretations, particularly in hormone measurements such as luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol.

Blocking reagents are commonly applied to mitigate the effect of heterophilic antibodies. These reagents neutralize nonspecific binding by weak heterophile antibodies, thereby reducing assay interference. A standard approach involves testing a sample twice, once with the blocking reagent and once without, followed by comparison of results. A difference exceeding 50% between the two measurements indicates the probable presence of heterophile antibodies [59]. It is essential, however, to validate that the assay is compatible with the blocking reagent and that the reagent itself does not alter assay performance. In samples from healthy individuals without heterophile antibodies, results should remain consistent regardless of the blocking reagent. Despite their frequent use, blocking reagents are not universally effective, with approximately 20% to 30% of heterophile antibody cases remaining undetected [61]. In such scenarios, retesting the sample on an alternative assay platform is recommended to confirm results. Cross-reactivity is another common interfering factor, particularly in steroid hormone assays. Testosterone immunoassays, for instance, demonstrate a degree of cross-reactivity with dihydrotestosterone, another androgen with structural similarity [62]. This cross-reactivity can lead to overestimation of testosterone levels, particularly in patients with altered androgen profiles, such as those receiving exogenous hormone therapy or with congenital or acquired endocrine disorders. Awareness of cross-reactivity is essential for interpreting results accurately, particularly in populations with low testosterone concentrations, where minor interference can significantly affect clinical decision-making.

Additional interfering factors may include sample hemolysis, lipemia, and icterus, which can affect signal detection and antibody binding. Exogenous substances, including biotin supplementation, can also interfere with immunoassays that utilize streptavidin-biotin chemistry. Laboratory personnel must carefully evaluate pre-analytical, analytical, and post-analytical sources of interference to ensure accuracy and reliability of hormone measurements, particularly in the context of infertility assessment, where precise quantification directly influences diagnosis and treatment strategies. In summary, while immunoassays provide highly sensitive and specific measurements for reproductive hormones, they are susceptible to interference from heterophilic antibodies, cross-reactivity, and other sample-related or chemical factors. Implementation of blocking reagents, validation of assay compatibility, and consideration of alternative testing platforms are

critical strategies to mitigate interference and ensure reliable laboratory results [58],[59],[60],[61],[62]. Understanding these limitations is essential for clinicians and laboratory personnel to interpret fertility testing accurately and guide evidence-based management in reproductive medicine.

Results, Reporting, and Critical Findings

Clinical laboratories maintain high standards through certification and inspection via the College of American Pathologists' laboratory accreditation program, which ensures accuracy, reliability, and reproducibility of test results [63]. This program involves a comprehensive review process, including 18 detailed checklists, to assess laboratory practices, personnel competence, equipment calibration, and quality control measures. Accurate reporting of laboratory results is essential and must include patient identifiers, sample collection date and time, physician and laboratory contact information, and complete test details. Protocols must also exist for the timely notification of critical values to ensure immediate clinical action [64]. Clinicians are responsible for integrating laboratory findings with the patient's clinical presentation. If results appear inconsistent with the patient's condition, repeating the test is warranted to confirm accuracy. Adherence to these standards supports safe, evidence-based decision-making and enhances patient care by minimizing errors in diagnosis and treatment planning.

Clinical Significance

Following a confirmed diagnosis of infertility, individualized treatment strategies can be developed to optimize the chances of conception. Ovulation induction represents the first-line therapeutic approach for women with ovulatory dysfunction. Pharmacologic agents such as clomiphene citrate, a selective estrogen receptor modulator, or letrozole, an aromatase inhibitor, are commonly used for this purpose. These medications are typically administered for five consecutive days during the early follicular phase of the menstrual cycle and may be combined with timed intercourse or intrauterine insemination to enhance the likelihood of fertilization [65]. In cases where conception does not occur after three cycles of ovulation induction, escalation to gonadotropin stimulation in combination with in vitro fertilization (IVF) is recommended [10]. Clomiphene functions by antagonizing estrogen receptors at the hypothalamus, thereby disrupting negative feedback and increasing the secretion of gonadotropin-releasing hormone. This elevation stimulates the anterior pituitary to release follicle-stimulating hormone and luteinizing hormone, promoting follicular recruitment and maturation. Letrozole, in contrast, inhibits peripheral aromatase activity, reducing the conversion of testosterone to estradiol. Lower estradiol levels relieve hypothalamic-pituitary inhibition, resulting in

increased FSH secretion and subsequent follicular development [10].

IVF is considered when ovulation induction and intrauterine insemination fail. This process begins with controlled ovarian hyperstimulation using gonadotropin injections, while closely monitoring follicular growth and serum estradiol levels over approximately two weeks. Mature oocytes are then retrieved transvaginally under ultrasound guidance and can either be cryopreserved or fertilized with sperm, optionally using intracytoplasmic sperm injection. Resulting embryos can be transferred fresh or cryopreserved for future use. Preimplantation genetic testing of blastocysts may also be performed to detect single-gene mutations or confirm normal chromosomal complement, providing an additional layer of diagnostic and therapeutic precision [10][66]. Ovarian hyperstimulation syndrome (OHSS) is a rare but clinically significant complication of pharmacologic stimulation. Prevention and management require careful patient selection, rigorous monitoring during stimulation, and adherence to established protocols designed to minimize the risk and severity of this syndrome [67]. Vigilant monitoring and individualized care remain essential to optimizing patient safety and treatment outcomes throughout assisted reproductive procedures.

Quality Control and Lab Safety

Ensuring the accuracy and reliability of laboratory testing relies heavily on the implementation of rigorous quality control (QC) and quality assurance (QA) protocols. Quality control encompasses all procedures used to monitor and verify that laboratory measurement processes meet established performance standards and to detect, prevent, or correct deviations in test results [69]. It comprises both internal and external components, each contributing to the overall reliability and credibility of laboratory operations [70]. Internal quality control (IQC) typically involves analyzing commercially available control materials with known values. When IQC results fall within predefined acceptable limits, the measurement process is considered stable, and patient test results can be reported with confidence. Conversely, if results deviate from expected ranges, the measurement procedure is flagged as unreliable, patient samples are withheld, and corrective actions must be initiated. After implementing corrective measures, the laboratory repeats the testing of both quality control samples and patient specimens to verify procedural accuracy [71]. This process ensures that each method functions correctly and maintains clinical validity [72].

Standard operating procedures (SOPs) form the backbone of quality control programs. SOPs must comprehensively outline all QC processes, including selection of control materials, statistical analyses to evaluate method performance, criteria for

acceptability of results, frequency of QC testing, corrective actions for deviations, and procedures for documentation and review. SOPs also define responsibilities, specifying personnel authorized to establish control limits, review QC results, interpret data, and approve exceptions or modifications [73]. External quality assessment (EQA) complements internal control by providing an objective evaluation of laboratory performance. External agencies supply unknown samples for testing using the laboratory's standard protocols. Results are then compared across multiple laboratories, enabling assessment of accuracy and consistency relative to peer laboratories and expected performance standards [74][75].

Laboratory safety is an integral aspect of operational quality. Every clinical laboratory must develop a comprehensive formal safety program, with oversight from leadership including directors, supervisors, and managers. A designated safety officer or safety committee is responsible for implementation and monitoring of safety policies, ensuring a safe working environment for all personnel [76][77]. Education and training are critical components of the safety program, including orientation for new employees and ongoing continuing education sessions emphasizing safe laboratory practices [78]. Standard precautions require consistent use of personal protective equipment (PPE) to prevent exposure to biological hazards. This includes gloves, gowns, laboratory coats, masks, face shields, and eye protection [79]. Compliance with Occupational Safety and Health Administration (OSHA) regulations is mandatory, including procedures for protection against bloodborne pathogens and proper management and disposal of laboratory-generated medical waste [80]. Collectively, robust quality control measures and strict adherence to safety protocols are essential to maintain the integrity of laboratory testing, protect personnel, and ensure reliable patient care outcomes.

Conclusion:

Laboratory evaluation constitutes the cornerstone of infertility assessment by providing objective, reproducible, and clinically actionable data essential for diagnosis and management. A systematic approach incorporating hormonal profiling, ovarian reserve testing, semen analysis, and selective genetic evaluation allows for accurate identification of female, male, combined, and unexplained causes of infertility. Biomarkers such as anti-Müllerian hormone, basal follicle-stimulating hormone, luteal progesterone, and semen parameters offer valuable insight into reproductive potential when interpreted within clinical context. Despite their widespread use, immunoassays are vulnerable to analytical interference, including heterophilic antibodies, cross-reactivity, and exogenous substances. Failure to recognize these limitations may result in misleading results and inappropriate clinical decisions. The integration of confirmatory testing, assay validation,

alternative platforms, and advanced techniques such as liquid chromatography–tandem mass spectrometry is therefore critical in complex or discordant cases. Equally important are strict quality control systems, accreditation standards, and laboratory safety protocols that ensure result reliability and protect laboratory personnel. Ultimately, combining high-quality laboratory diagnostics with appropriate imaging and individualized clinical evaluation enhances diagnostic accuracy, guides targeted therapy, and optimizes reproductive outcomes. Continuous advancements in laboratory technology and adherence to best practices remain essential for improving infertility care in modern reproductive medicine.

References:

1. Infertility Workup for the Women's Health Specialist: ACOG Committee Opinion, Number 781. *Obstetrics and gynecology*. 2019 Jun;133(6):e377-e384. doi: 10.1097/AOG.0000000000003271.
2. American College of Obstetricians and Gynecologists Committee on Gynecologic Practice and Practice Committee. Female age-related fertility decline. Committee Opinion No. 589. *Fertility and sterility*. 2014 Mar;101(3):633-4. doi: 10.1016/j.fertnstert.2013.12.032.
3. Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. *Fertility and sterility*. 2005 Jun;83(6):1622-8
4. Park CJ, Oh JE, Feng J, Cho YM, Qiao H, Ko C. Lifetime changes of the oocyte pool: Contributing factors with a focus on ovulatory inflammation. *Clinical and experimental reproductive medicine*. 2022 Mar;49(1):16-25. doi: 10.5653/cerm.2021.04917.
5. de Ziegler D, Toner JP. Fertility workups: the times they are a-changin'. *Fertility and sterility*. 2022 Jul;118(1):5-7. doi: 10.1016/j.fertnstert.2022.05.007.
6. Tarín JJ, Pellicer A. Oocyte maturation in human in vitro fertilisation programmes. *Annals of the Academy of Medicine, Singapore*. 1992 Jul;21(4):492-7
7. Kocourkova J, Burcin B, Kucera T. Demographic relevancy of increased use of assisted reproduction in European countries. *Reproductive health*. 2014 May 26;11():37. doi: 10.1186/1742-4755-11-37.
8. Eskew AM, Jungheim ES. A History of Developments to Improve in vitro Fertilization. *Missouri medicine*. 2017 May-Jun;114(3):156-159
9. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. *Reproductive biology and endocrinology* : RB&E. 2015 Apr 26;13():37. doi: 10.1186/s12958-015-0032-1.
10. Carson SA, Kallen AN. Diagnosis and Management of Infertility: A Review. *JAMA*. 2021 Jul 6;326(1):65-76. doi: 10.1001/jama.2021.4788.
11. Harris ID, Fronczak C, Roth L, Meacham RB. Fertility and the aging male. *Reviews in urology*. 2011;13(4):e184-90
12. de Angelis C, Nardone A, Garifalos F, Pivonello C, Sansone A, Conforti A, Di Dato C, Sirico F, Alviggi C, Isidori A, Colao A, Pivonello R. Smoke, alcohol and drug addiction and female fertility. *Reproductive biology and endocrinology* : RB&E. 2020 Mar 12;18(1):21. doi: 10.1186/s12958-020-0567-7.
13. Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org, Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: a committee opinion. *Fertility and sterility*. 2020 Dec;114(6):1151-1157. doi: 10.1016/j.fertnstert.2020.09.134.
14. Guimarães RM, Ribeiro LM, Sasaki LP, Nakagawa HM, Cabral IO. Oocyte Morphology and Reproductive Outcomes - Case Report and Literature Review. *JBRA assisted reproduction*. 2021 Jul 21;25(3):500-507. doi: 10.5935/1518-0557.20210001.
15. Pilsgaard F, Grynderup AG, Løssl K, Bungum L, Pinborg A. The use of anti-Müllerian hormone for controlled ovarian stimulation in assisted reproductive technology, fertility assessment and -counseling. *Acta obstetricia et gynecologica Scandinavica*. 2018 Sep;97(9):1105-1113. doi: 10.1111/aogs.13334.
16. Kedem A, Haas J, Geva LL, Yerushalmi G, Gilboa Y, Kanety H, Hanochi M, Maman E, Hourvitz A. Ongoing pregnancy rates in women with low and extremely low AMH levels. A multivariate analysis of 769 cycles. *PLoS one*. 2013;8(12):e81629. doi: 10.1371/journal.pone.0081629.
17. Toner JP, Seifer DB. Why we may abandon basal follicle-stimulating hormone testing: a sea change in determining ovarian reserve using antimüllerian hormone. *Fertility and sterility*. 2013 Jun;99(7):1825-30. doi: 10.1016/j.fertnstert.2013.03.001.
18. Holesh JE, Bass AN, Lord M. Physiology, Ovulation. *StatPearls*. 2024 Jan
19. Ben-Chetrit A, Gotlieb L, Wong PY, Casper RF. Ovarian response to recombinant human follicle-stimulating hormone in luteinizing hormone-depleted women: examination of the two cell, two gonadotropin theory. *Fertility and sterility*. 1996 Apr;65(4):711-7

20. Tsolaki M, Grammaticos P, Karanasou C, Balaris V, Kapoukranidou D, Kalpidis I, Petsanis K, Dedousi E. Serum estradiol, progesterone, testosterone, FSH and LH levels in postmenopausal women with Alzheimer's dementia. *Hellenic journal of nuclear medicine*. 2005 Jan-Apr;8(1):39-42.

21. Ialongo C, Bernardini S. Phlebotomy, a bridge between laboratory and patient. *Biochimia medica*. 2016;26(1):17-33. doi: 10.11613/BM.2016.002.

22. Hanson BM, Aston KI, Jenkins TG, Carrell DT, Hotaling JM. The impact of ejaculatory abstinence on semen analysis parameters: a systematic review. *Journal of assisted reproduction and genetics*. 2018 Feb;35(2):213-220. doi: 10.1007/s10815-017-1086-0.

23. Sunder M, Leslie SW. Semen Analysis. *StatPearls*. 2024 Jan.

24. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Treince DL, Wilson DP, McKnight K, McKenzie LJ. Evaluation of Infertility, Ovulation Induction and Assisted Reproduction. *Endotext*. 2000.

25. Su HW, Yi YC, Wei TY, Chang TC, Cheng CM. Detection of ovulation, a review of currently available methods. *Bioengineering & translational medicine*. 2017 Sep;2(3):238-246. doi: 10.1002/btm2.10058.

26. Sheehan MT. Polycystic ovarian syndrome: diagnosis and management. *Clinical medicine & research*. 2004 Feb;2(1):13-27.

27. Munro MG, Balen AH, Cho S, Critchley HOD, Díaz I, Ferriani R, Henry L, Mocanu E, van der Spuy ZM, FIGO Committee on Menstrual Disorders and Related Health Impacts, and FIGO Committee on Reproductive Medicine, Endocrinology, and Infertility. The FIGO Ovulatory Disorders Classification System†. *Human reproduction* (Oxford, England). 2022 Sep 30;37(10):2446-2464. doi: 10.1093/humrep/deac180.

28. Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. *Reproductive biology and endocrinology : RB&E*. 2009 May 4;7():40. doi: 10.1186/1477-7827-7-40.

29. van Disseldorp J, Lambalk CB, Kwee J, Loosman CW, Eijkemans MJ, Fauser BC, Broekmans FJ. Comparison of inter- and intra-cycle variability of anti-Müllerian hormone and antral follicle counts. *Human reproduction* (Oxford, England). 2010 Jan;25(1):221-7. doi: 10.1093/humrep/dep366.

30. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Treince DL, Wilson DP. *Endotext*. 2000.

31. Practice Committee of the American Society for Reproductive Medicine. Subclinical hypothyroidism in the infertile female population: a guideline. *Fertility and sterility*. 2015 Sep;104(3):545-53. doi: 10.1016/j.fertnstert.2015.05.028.

32. Qu X, Donnelly R. Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome. *International journal of molecular sciences*. 2020 Nov 1;21(21):. doi: 10.3390/ijms21218191.

33. Michelle M A, Jensen CT, Habra MA, Menias CO, Shaaban AM, Wagner-Bartak NA, Roman-Colon AM, Elsayes KM. Adrenal cortical hyperplasia: diagnostic workup, subtypes, imaging features and mimics. *The British journal of radiology*. 2017 Nov;90(1079):20170330. doi: 10.1259/bjr.20170330.

34. Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org, Practice Committee of the American Society for Reproductive Medicine. Fertility evaluation of infertile women: a committee opinion. *Fertility and sterility*. 2021 Nov;116(5):1255-1265. doi: 10.1016/j.fertnstert.2021.08.038.

35. Singh P, Singh M, Cugati G, Singh AK. Hyperprolactinemia: An often missed cause of male infertility. *Journal of human reproductive sciences*. 2011 May;4(2):102-3. doi: 10.4103/0974-1208.86094.

36. Koike K, Miyake A, Aono T, Sakamoto T, Ohmichi M, Yamaguchi M, Tanizawa O. Effect of prolactin on the secretion of hypothalamic GnRH and pituitary gonadotropins. *Hormone research*. 1991;35 Suppl 1():5-12.

37. Aziz K, Shahbaz A, Umair M, Sharifzadeh M, Sachmechi I. Hyperprolactinemia with Galactorrhea Due to Subclinical Hypothyroidism: A Case Report and Review of Literature. *Cureus*. 2018 May 31;10(5):e2723. doi: 10.7759/cureus.2723.

38. Kolon TF, Miller OF. Comparison of single versus multiple dose regimens for the human chorionic gonadotropin stimulatory test. *The Journal of urology*. 2001 Oct;166(4):1451.

39. Okuyama A, Namiki M, Koide T, Itatani H, Mizutani S, Sonoda T, Aono T, Matsumoto K. A simple hCG stimulation test for normal and hypogonadal males. *Archives of andrology*. 1981 Feb;6(1):75-81.

40. Cocuzza M, Alvarenga C, Pagani R. The epidemiology and etiology of azoospermia. *Clinics (Sao Paulo, Brazil)*. 2013;68 Suppl 1(Suppl 1):15-26.

41. Mittal V, Shah A. Situs inversus totalis: the association of Kartagener's syndrome with diffuse bronchiolitis and azoospermia. *Archivos de bronconeumologia*. 2012 May;48(5):179-82. doi: 10.1016/j.arbres.2011.09.009.

42. Leslie SW, Soon-Sutton TL, Khan MAB. Male Infertility. *StatPearls*. 2025 Jan.

43. El Osta R, Almont T, Diligent C, Hubert N, Eschwège P, Hubert J. Anabolic steroids abuse and male infertility. *Basic and clinical andrology*. 2016;26():2. doi: 10.1186/s12610-016-0029-4.

44. Kantartzzi PD, Goulis ChD, Goulis GD, Papadimas I. Male infertility and varicocele: myths and reality. *Hippokratia*. 2007 Jul;11(3):99-104.

45. Layman LC. Human gene mutations causing infertility. *Journal of medical genetics*. 2002 Mar;39(3):153-61.

46. Committee Opinion No. 691: Carrier Screening for Genetic Conditions. *Obstetrics and gynecology*. 2017 Mar;129(3):e41-e55. doi: 10.1097/AOG.0000000000001952.

47. Cue L, Mayer C, Martingano DJ. *Hysterosalpingogram*. *StatPearls*. 2024 Jan.

48. Persoon T. Immunochemical assays in the clinical laboratory. *Clinical laboratory science : journal of the American Society for Medical Technology*. 1992 Jan-Feb;5(1):31-4.

49. Rongen HA, Hoetelmans RM, Bult A, van Bennekom WP. Chemiluminescence and immunoassays. *Journal of pharmaceutical and biomedical analysis*. 1994 Apr;12(4):433-62.

50. Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. *Lab on a chip*. 2008 Dec;8(12):2188-96. doi: 10.1039/b807855f.

51. Zhang B, Lv S, Qiang Z, Guo M, Tan X, Li H, Yu Y. Improved Sensitivity and Wide Range Detection of Small Analytes Using a Two-Antigen-Combined Competitive Immunoassay. *ACS omega*. 2022 Dec 27;7(51):48121-48129. doi: 10.1021/acsomega.2c06126. Epub 2022 Dec 13.

52. Amino N, Hidaka Y. [Various types of immunoassay]. *Nihon rinsho. Japanese journal of clinical medicine*. 1995 Sep;53(9):2107-11.

53. Alhajj M, Zubair M, Farhana A. Enzyme Linked Immunosorbent Assay. *StatPearls*. 2024 Jan.

54. Vesper HW, Botelho JC, Wang Y. Challenges and improvements in testosterone and estradiol testing. *Asian journal of andrology*. 2014 Mar-Apr.

55. Casals G, Costa RF, Rull EU, Escobar-Morreale HF, Argente J, Sesmilo G, Biagetti B. Recommendations for the measurement of sexual steroids in clinical practice. A position statement of SEQC(MI)/SEEN/SEEP. *Advances in laboratory medicine*. 2023 Apr;4(1):52-69. doi: 10.1515/almed-2023-0020.

56. Garg E, Zubair M. Mass Spectrometer. *StatPearls*. 2024 Jan.

57. Shea JL, Wong PY, Chen Y. Free testosterone: clinical utility and important analytical aspects of measurement. *Advances in clinical chemistry*. 2014;63():59-84.

58. Tate J, Ward G. Interferences in immunoassay. *The Clinical biochemist. Reviews*. 2004 May;25(2):105-20.

59. Ghazal K, Brabant S, Prie D, Piketty ML. Hormone Immunoassay Interference: A 2021 Update. *Annals of laboratory medicine*. 2022 Jan 1;42(1):3-23. doi: 10.3343/alm.2022.42.1.3.

60. Boscato LM, Stuart MC. Heterophilic antibodies: a problem for all immunoassays. *Clinical chemistry*. 1988 Jan;34(1):27-33.

61. Gulbahar O, Konca Degertekin C, Akturk M, Yalcin MM, Kalan I, Atikeler GF, Altinova AE, Yetkin I, Arslan M, Toruner F. A Case With Immunoassay Interferences in the Measurement of Multiple Hormones. *The Journal of clinical endocrinology and metabolism*. 2015 Jun;100(6):2147-53. doi: 10.1210/jc.2014-4023.

62. Swerdlow RS, Dudley RE, Page ST, Wang C, Salameh WA. Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels. *Endocrine reviews*. 2017 Jun 1;38(3):220-254. doi: 10.1210/er.2016-1067.

63. Batjer JD. The College of American Pathologists Laboratory Accreditation Programme. *Clinical and laboratory haematology*. 1990;12 Suppl 1():135-8.

64. Lenicek Krleza J, Honovic L, Vlasic Tanaskovic J, Podolar S, Rimac V, Jokic A. Post-analytical laboratory work: national recommendations from the Working Group for Post-analytics on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine. *Biochimia medica*. 2019 Jun 15;29(2):020502. doi: 10.11613/BM.2019.020502.

65. Legro RS, Brzyski RG, Diamond MP, Coutifaris C, Schlaff WD, Casson P, Christman GM, Huang H, Yan Q, Alvero R, Haisenleder DJ, Barnhart KT, Bates GW, Usadi R, Lucidi S, Baker V, Trussell JC, Krawetz SA, Snyder P,

Ohl D, Santoro N, Eisenberg E, Zhang H, NICHD Reproductive Medicine Network. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. *The New England journal of medicine*. 2014 Jul 10:371(2):119-29. doi: 10.1056/NEJMoa1313517.

66. Jain M, Singh M. Assisted Reproductive Technology (ART) Techniques. StatPearls. 2025 Jan

67. Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org, Practice Committee of the American Society for Reproductive Medicine. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. *Fertility and sterility*. 2016 Dec;106(7):1634-1647. doi: 10.1016/j.fertnstert.2016.08.048.

68. Walker MH, Tobler KJ. Female Infertility. StatPearls. 2025 Jan

69. Agarwal A, Sharma R, Gupta S, Finelli R, Parekh N, Selvam MKP, Pompeu CP, Madani S, Belo A, Darbandi M, Singh N, Darbandi S, Covarrubias S, Sadeghi R, Arafa M, Majzoub A, Caraballo M, Giroski A, McNulty K, Durairajanayagam D, Henkel R. Standardized Laboratory Procedures, Quality Control and Quality Assurance Are Key Requirements for Accurate Semen Analysis in the Evaluation of Infertile Male. *The world journal of men's health*. 2022 Jan;40(1):52-65. doi: 10.5534/wjmh.210022.

70. Kinns H, Pitkin S, Housley D, Freedman DB. Internal quality control: best practice. *Journal of clinical pathology*. 2013 Dec;66(12):1027-32. doi: 10.1136/jclinpath-2013-201661. Epub 2013 Sep 26

71. Badrick T. Integrating quality control and external quality assurance. *Clinical biochemistry*. 2021 Sep;95():15-27. doi: 10.1016/j.clinbiochem.2021.05.003.

72. Westgard JO. Perspectives on quality control, risk management, and analytical quality management. *Clinics in laboratory medicine*. 2013 Mar;33(1):1-14. doi: 10.1016/j.cll.2012.10.003.

73. Westgard JO. Internal quality control: planning and implementation strategies. *Annals of clinical biochemistry*. 2003 Nov;40(Pt 6):593-611

74. Kristensen GB, Aakre KM, Kristoffersen AH, Sandberg S. How to conduct External Quality Assessment Schemes for the pre-analytical phase? *Biochimia medica*. 2014;24(1):114-22. doi: 10.11613/BM.2014.013.

75. Badrick T, Gay S, McCaughey EJ, Georgiou A. External Quality Assessment beyond the analytical phase: an Australian perspective. *Biochimia medica*. 2017 Feb 15;27(1):73-80. doi: 10.11613/BM.2017.009.

76. Meisenhelder J, Bursik S, Lunn G, Strober W. Laboratory safety. Current protocols in human genetics. 2008 Apr:Appendix 2();Appendix 2A. doi: 10.1002/0471142905.hga02as57.

77. Burnett LC, Lunn G, Coico R. Biosafety: guidelines for working with pathogenic and infectious microorganisms. Current protocols in microbiology. 2009 May:Chapter 1(1):Unit 1A.1. doi: 10.1002/9780471729259.mc01a01s13.

78. Asiry S, Ang LC. Laboratory Safety: Chemical and Physical Hazards. Methods in molecular biology (Clifton, N.J.). 2019;1897():243-252. doi: 10.1007/978-1-4939-8935-5_21.

79. Ejilemele AA, Ojule AC. Health and safety in clinical laboratories in developing countries: safety considerations. *Nigerian journal of medicine : journal of the National Association of Resident Doctors of Nigeria*. 2004 Apr-Jun;13(2):182-8

80. Lestari F, Bowolaksono A, Yuniautami S, Wulandari TR, Andani S. Evaluation of the implementation of occupational health, safety, and environment management systems in higher education laboratories. *Journal of chemical health & safety*. 2019 Jul-Oct;26(4):14-19. doi: 10.1016/j.jchas.2018.12.006.