

Emergency and Nursing Management of Pituitary Apoplexy-An Updated Review

Hail Marran Jabban Alanazi ⁽¹⁾, Zayed Aied Fadgash Almaradhi ⁽¹⁾, Saad Salamah Salem Al-Fuhaigi ⁽²⁾, Mansour Salem Qadhib Alanazi ⁽¹⁾, Jazzaa Otayban Huran Alruwaili ⁽¹⁾, Abdullah Mohammed Abdullah Alowaydhah ⁽¹⁾, Ahmed Munahi Jadid Alruwily ⁽¹⁾, Abdulrahman Shaker Alruwily ⁽¹⁾, Atiah Zaydi M Alruwaili ⁽¹⁾, Ahmed Qalil Shihab Alruwaili ⁽¹⁾, Majed Hamed Majed Alshammari ⁽³⁾, Tawfiq Atallah Saad Alrashed ⁽¹⁾, Madallah Mahja Al-Sharari ⁽¹⁾, Tawfiq Sultan Jahbal Alsaadi ⁽¹⁾

(1) Branch of the Ministry of Health in Al-Jouf, Saudi Arabia,

(2) Al-Jouf Health Emergency and Disaster Management Center, Ministry of Health, Saudi Arabia,

(3) Al-Jouf Health Cluster, Ministry of Health, Saudi Arabia

Abstract

Background: Pituitary apoplexy is a rare but potentially life-threatening endocrine and neurological emergency caused by acute hemorrhage or ischemic infarction of the pituitary gland, most commonly within a preexisting adenoma. It presents abruptly with severe headache, visual impairment, ophthalmoplegia, and acute hormonal deficiencies, particularly adrenal insufficiency.

Aim: This review aims to summarize current evidence regarding the etiology, pathophysiology, clinical presentation, diagnostic evaluation, and contemporary management strategies of pituitary apoplexy, with emphasis on emergency and nursing considerations.

Methods: A narrative review approach was employed, synthesizing published clinical studies, imaging data, and management guidelines related to pituitary apoplexy. Emphasis was placed on acute presentation, diagnostic imaging, endocrine assessment, and outcomes of medical versus surgical management.

Results: Pituitary apoplexy most frequently occurs in patients with previously unrecognized pituitary macroadenomas. Magnetic resonance imaging is the diagnostic modality of choice, while laboratory evaluation commonly reveals multiple hormonal deficiencies. Immediate corticosteroid therapy is essential and lifesaving. Surgical decompression is indicated in patients with visual deterioration or reduced consciousness, whereas conservative management is appropriate in selected stable cases.

Conclusion: Early recognition, prompt steroid replacement, appropriate imaging, and multidisciplinary management are critical to reducing morbidity and mortality associated with pituitary apoplexy.

Keywords: Pituitary apoplexy, pituitary adenoma, adrenal insufficiency, emergency management, transsphenoidal surgery

Introduction

Pituitary apoplexy represents an acute clinical syndrome defined by hemorrhage or ischemic infarction within the pituitary gland. The condition arises most often in the setting of an existing pituitary adenoma where tumor tissue predisposes the gland to vascular compromise.^{[1][2][3]} Sudden disruption of blood supply or bleeding within the confined sellar space leads to rapid gland dysfunction and compression of nearby structures. These mechanisms explain the abrupt onset that characterizes the disorder and the frequent severity of its presentation. The term pituitary apoplexy derives from a concept of sudden tissue failure. It reflects the rapid loss of pituitary integrity that follows infarction or hemorrhage. Early pathological observations linked this process to pituitary tumors. Pearce Bailey documented the first recognized case of hemorrhage within a pituitary tumor in 1898 which established a

foundation for later clinical recognition. However the formal designation pituitary apoplexy emerged decades later when Brougham et al. introduced the term in 1950 to describe necrosis and bleeding occurring within pituitary adenomas.^[4] This historical development highlights the gradual evolution from isolated case descriptions toward a defined clinicopathological entity. From a clinical perspective pituitary apoplexy carries high significance due to its acute course and potential for rapid deterioration. Sudden expansion of pituitary tissue within the sella turcica can impair hormonal secretion and exert pressure on the optic chiasm cavernous sinus and adjacent neural structures. These effects account for the endocrine failure and neurological deficits often observed at presentation. Delay in recognition increases the risk of permanent visual loss persistent hypopituitarism and systemic instability. Pituitary apoplexy therefore constitutes a

combined medical and surgical emergency in many cases. Accurate and timely diagnosis allows early initiation of supportive care endocrine replacement and surgical decompression when indicated. Awareness of its association with preexisting pituitary adenomas remains central to early suspicion. Prompt evaluation and intervention play a decisive role in limiting morbidity and improving overall patient outcomes [1][2][3].

Etiology

Pituitary apoplexy develops most commonly in the presence of a preexisting pituitary adenoma. In the majority of affected individuals, the adenoma remains clinically silent prior to the acute event. Many patients therefore present without prior knowledge of an underlying pituitary tumor.[5] The adenomatous tissue exhibits altered vascular architecture and increased metabolic demand, which predispose it to ischemia or hemorrhage under physiological or iatrogenic stress. These structural and functional vulnerabilities explain why pituitary apoplexy preferentially affects adenomatous glands rather than normal pituitary tissue. Multiple precipitating and contributory factors have been implicated in triggering pituitary apoplexy. Endocrine stimulation tests represent a recognized risk, as abrupt hormonal provocation can increase metabolic demand and blood flow within the tumor, thereby promoting infarction or bleeding.[6][7] Pharmacological therapies such as bromocriptine and cabergoline may also contribute by inducing rapid tumor shrinkage or vascular changes within prolactin-secreting adenomas.[8][9] Similarly, gonadotropin-releasing hormone therapy has been associated with apoplexy, likely due to sudden hormonal shifts that alter pituitary perfusion.[10]

Non-endocrine factors also play a significant etiological role. Surgical procedures performed in the prone position, including lumbar fusion surgeries, can compromise venous return and intracranial hemodynamics, increasing the risk of pituitary hemorrhage.[11][12] Physiological states such as pregnancy further heighten susceptibility, as pituitary enlargement and increased vascularity occur in response to hormonal demands.[13][14] Prior pituitary irradiation weakens vascular integrity and predisposes the gland to delayed ischemic injury.[15] Hematological disturbances represent additional contributors. Anticoagulant therapy increases bleeding risk within adenomatous tissue.[16] Thrombocytopenia similarly compromises hemostasis and has been linked to pituitary hemorrhage.[17][18] The use of medications for erectile dysfunction has also been reported as a potential trigger, possibly through systemic vasodilatory effects that alter pituitary blood flow.[19][20] Sheehan syndrome represents a distinct pathological entity characterized by ischemic necrosis of the pituitary gland following severe postpartum hemorrhage. Unlike pituitary apoplexy,

this condition occurs in the absence of a preexisting adenoma and rarely involves visual impairment. Although patients develop adrenal insufficiency hypothyroidism and hypopituitarism, the lack of tumor-related expansion differentiates Sheehan syndrome from classical pituitary apoplexy, and it is therefore not typically classified within the same diagnostic framework.

Epidemiology

The epidemiological profile of pituitary apoplexy shows wide variation across published studies. Reported incidence rates among patients with pituitary adenomas range from 1.5% to 27.7%. This broad disparity reflects differences in study design diagnostic criteria and case definition. Many reports fail to separate clinically overt cases from those detected incidentally, which leads to overestimation of true symptomatic disease burden. When analysis is restricted to patients who present with clear clinical manifestations, the incidence consistently approaches 10%. [2][21][22][23] The growing use of advanced neuroimaging has further influenced epidemiological estimates. Magnetic resonance imaging frequently identifies intratumoral hemorrhage in patients without acute neurological or endocrine symptoms. When such asymptomatic hemorrhagic events are included, the incidence of pituitary apoplexy within adenomas rises to nearly 26%. These findings suggest that subclinical apoplexy may be more common than previously recognized, although its clinical relevance remains limited in the absence of symptoms. Despite these observations pituitary apoplexy remains an uncommon event on a population level. The annual incidence is estimated at approximately 0.2% among individuals with pituitary adenomas. Risk appears to correlate strongly with tumor characteristics. Macroadenomas exceeding 10 mm in diameter demonstrate a higher propensity for hemorrhage or infarction. Tumors that exhibit rapid volumetric expansion also show increased vulnerability likely due to inadequate vascular adaptation to accelerated growth.[24] Demographic patterns provide additional epidemiological insight. Most affected patients fall within the age range of 37 to 58 years.[25] This distribution corresponds with the typical age of diagnosis for pituitary adenomas and suggests that cumulative vascular stress may contribute to risk. A consistent male predominance has been documented with a male to female ratio approaching 2 to 1.[23][25][26] The basis for this disparity remains uncertain but may reflect differences in tumor biology health care utilization or hormonal influences. Overall, the epidemiology of pituitary apoplexy highlights a condition that is uncommon yet clinically significant. Improved recognition of symptomatic versus incidental cases remains essential for accurate epidemiological assessment and appropriate clinical interpretation.

Pathophysiology

The pathophysiological basis of pituitary apoplexy centers on acute hemorrhage or infarction within the pituitary gland most often occurring in an adenomatous lesion. Hemorrhage leads to rapid expansion of tumor volume within the rigid confines of the sella turcica. This sudden increase in mass effect accounts for the majority of clinical manifestations. Visual disturbances arise primarily from direct compression of the optic nerves or optic chiasm. At the same time abrupt disruption of pituitary tissue integrity interferes with hormone synthesis and release resulting in acute endocrine dysfunction that may involve one or multiple hormonal axes. Several complementary mechanisms have been proposed to explain the ischemic and hemorrhagic changes observed in both pituitary adenomas and the surrounding normal gland. These mechanisms do not function in isolation. Instead, they likely act in concert to initiate and propagate the apoplectic event. The confined anatomy of the sellar region combined with altered tumor vascularity creates a setting in which minor hemodynamic shifts can produce profound consequences [27].

One widely accepted theory emphasizes vascular compression at the level of the superior hypophyseal artery and its branches. According to this model tumor enlargement leads to mechanical compression of these vessels against the diaphragma sella. This process compromises arterial inflow to the anterior pituitary gland and the adenoma itself resulting in ischemia and subsequent necrosis.[2][3][27] Reduced perfusion weakens tissue integrity and increases susceptibility to secondary hemorrhage. A second proposed mechanism focuses on the intrinsic microvascular architecture of the pituitary gland. The pituitary contains a delicate and highly specialized vascular network that is particularly vulnerable to external pressure. Expansion of an intrasellar tumor compresses this fine capillary system within a limited space. The resulting reduction in blood flow promotes ischemia, cellular death and intratumoral hemorrhage.[2][3][28] This mechanism highlights the importance of local anatomical constraints in the development of apoplexy. A third theory suggests that rapid tumor growth exceeds its vascular supply. As adenomas enlarge their metabolic demands increase. When neovascularization fails to match this growth, ischemia ensues leading to tissue necrosis and eventual bleeding.[2][3][29] Together these mechanisms explain the sudden onset and severity of pituitary apoplexy and underscore the multifactorial nature of its pathogenesis.

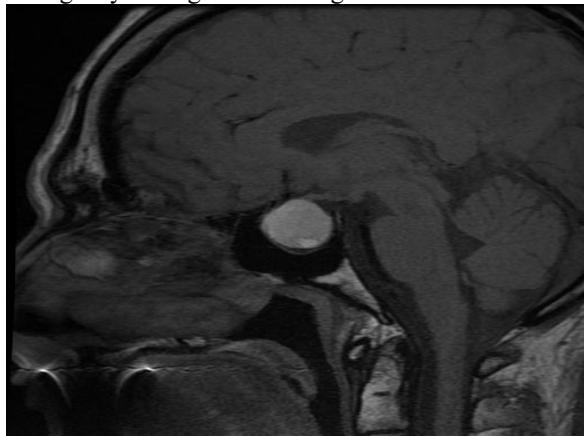
Histopathology

Pituitary apoplexy represents a clinicopathological syndrome that arises from acute hemorrhage or ischemic infarction within the pituitary gland, most frequently involving a preexisting pituitary adenoma. Histopathological

examination of affected tissue provides direct evidence of the underlying destructive process. The most consistent findings include areas of hemorrhage, infarction, or a combination of both within the gland or tumor. These changes reflect sudden vascular compromise and tissue injury that define the apoplectic event. Microscopic analysis commonly reveals extensive necrosis characterized by loss of normal cellular architecture and nonviable tissue. The presence of necrotic areas indicates prior ischemia with subsequent tissue infarction. In hemorrhagic cases, extravasated blood is identified within the tumor mass, normal pituitary parenchyma, or surrounding sellar structures. Ruptured or disrupted blood vessels are often visible, supporting vascular failure as a primary pathological mechanism. These vascular changes explain the rapid increase in intrasellar pressure, and the acute clinical deterioration observed in affected patients. When pituitary apoplexy occurs within an adenoma, residual tumor cells may be identified at the periphery of necrotic or hemorrhagic zones. These cells are frequently nonfunctioning; however, immunohistochemical studies often demonstrate prolactin positivity, indicating an underlying prolactinoma. This finding is consistent with the high prevalence of prolactin-secreting adenomas among reported cases of pituitary apoplexy. Immunohistochemistry therefore plays a key role in characterizing the tumor subtype when viable tissue remains available for analysis. Inflammatory cell infiltration is another recognized histopathological feature. Lymphocytes, macrophages and other inflammatory elements may be present within or adjacent to areas of necrosis and hemorrhage. Their presence suggests an active immune response to tissue injury and blood breakdown products. Together these histopathological findings provide a structural correlate to the acute endocrine and neurological manifestations of pituitary apoplexy and confirm the diagnosis at the tissue level [27][28].

History and Physical

Pituitary apoplexy most often presents with a sudden onset headache that patients typically localize to the retroorbital or periorbital region.[3][30] This headache represents the most frequent initial complaint and often signals the acute expansion of sellar contents. Several pathophysiological mechanisms explain this presentation. Involvement of the superior division of the trigeminal nerve within the cavernous sinus can generate intense pain. Additional contributors include irritation of the meninges, compression of the dura mater and stretching of the sellar walls as intratumoral hemorrhage or infarction progress. The abrupt nature of these changes accounts for the rapid onset and severity of symptoms. Visual and neurological manifestations frequently accompany headache and reflect compression of surrounding neural structures. Patients may report reduced visual


acuity visual field defects such as hemianopia diplopia or eyelid drooping. Nausea vomiting altered mental status and features of hormonal failure are also commonly observed.[30][31][32][33] Diplopia occurs in many cases due to extrinsic compression of the cranial nerves responsible for ocular movement. Among these nerves the oculomotor nerve is most frequently affected.[25] Involvement of this nerve produces ptosis and lateral deviation of the affected eye. Pupillary dilation may also be present when parasympathetic fibers are compromised. Endocrine dysfunction represents a critical component of the clinical presentation. The most clinically significant hormonal disturbance involves deficiency of adrenocorticotrophic hormone. More than two thirds of patients with pituitary apoplexy develop impaired ACTH secretion.[2][3] This deficiency leads to reduced cortisol production by the adrenal glands and results in a life threatening state known as adrenal crisis. The systemic effects of cortisol depletion affect multiple organ systems and may progress rapidly without intervention. Clinically adrenal crisis manifests through nonspecific yet severe symptoms. Patients may experience nausea vomiting and abdominal pain along with bradycardia hypotension hypothermia and profound lethargy. In advanced cases consciousness may deteriorate leading to coma. Recognition of these features during history taking and physical examination remains essential since early identification and hormonal replacement can be lifesaving in patients with pituitary apoplexy.

Evaluation

Evaluation of suspected pituitary apoplexy requires rapid and systematic assessment because delayed diagnosis increases the risk of permanent neurological and endocrine complications. Imaging and hormonal testing form the core of diagnostic workup and guide urgent management decisions. Early confirmation of the diagnosis allows timely intervention and improves outcomes in this potentially life threatening condition. Computed tomographic imaging usually represents the first diagnostic step. A noncontrast head CT scan is frequently obtained due to its wide availability and rapid acquisition in emergency settings. This modality typically reveals a sellar or suprasellar mass containing hyperdense areas consistent with acute intralesional hemorrhage. These hyperdensities reflect the presence of blood products within the tumor. However, CT has limited sensitivity for detecting ischemia or necrosis of pituitary tissue and cannot reliably characterize nonhemorrhagic infarction. For this reason, CT alone is insufficient to fully evaluate pituitary apoplexy. Contrast enhanced CT imaging is often performed subsequently to better delineate the size and extent of the underlying pituitary lesion. Administration of contrast allows differentiation between hemorrhagic components and viable tumor tissue. Enhancing portions of the adenoma appear hyperdense compared with

surrounding brain structures while hemorrhagic regions remain distinctly dense. Although contrast CT improves anatomical definition it remains inferior to magnetic resonance imaging for tissue characterization and assessment of parasellar extension [25].

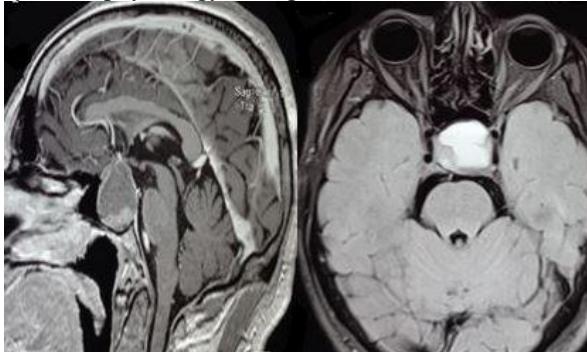

Magnetic resonance imaging is the diagnostic modality of choice in pituitary apoplexy.[2][25] MRI provides superior soft tissue contrast and multiplanar visualization allowing accurate assessment of tumor size extension and relationship to adjacent structures. It readily identifies hemorrhagic and necrotic components within the pituitary gland. Typical MRI findings include an enlarged sellar or suprasellar mass with peripheral enhancement surrounding a central hypointense region suggestive of blood accumulation. Diffusion weighted imaging adds further diagnostic value by identifying areas of restricted diffusion consistent with ischemia or necrosis following vascular compromise.[2] Signal characteristics on MRI vary depending on the underlying pathology. In hemorrhagic apoplexy T1 weighted sequences demonstrate high signal intensity within the lesion reflecting acute blood products. In contrast infarction without hemorrhage appears as low signal intensity on T1 weighted imaging.[3] The T2 star weighted gradient echo sequence shows high sensitivity for hemosiderin deposition and allows detection of even small hemorrhagic foci.[2] These features make MRI indispensable for confirming the diagnosis and defining disease severity. Hormonal evaluation is a critical component of assessment. Approximately 80 percent of patients exhibit deficiency of at least one anterior pituitary hormone at presentation.[1] Growth hormone deficiency occurs in up to 90 percent of cases while ACTH deficiency is present in nearly 70 percent.[2][34] Identification of hormonal deficits is essential because acute adrenal insufficiency represents the most immediate threat to survival. Comprehensive endocrine testing therefore complements imaging and directly informs emergency management strategies.

Fig. 1: T1-Weighted Magnetic Resonance Imaging of Pituitary Apoplexy.

Treatment / Management

Management of pituitary apoplexy requires immediate and coordinated intervention because the condition carries a high risk of acute neurological deterioration and life threatening endocrine failure. Initial treatment priorities focus on medical stabilization. Careful assessment of airway circulation and mental status is essential. Fluid balance and electrolyte abnormalities must be promptly corrected to preserve hemodynamic stability and prevent secondary complications. Early recognition of endocrine insufficiency guides urgent therapeutic decisions and influences prognosis. Corticosteroid replacement represents the cornerstone of acute medical management. All patients with suspected pituitary apoplexy should receive corticosteroids regardless of whether overt signs of adrenal crisis are present.[34][35] This strategy addresses the high likelihood of secondary adrenal insufficiency and mitigates edema surrounding the optic nerves and chiasm. Hydrocortisone is the agent of choice due to its combined glucocorticoid and mineralocorticoid activity. Recommended regimens include an initial intravenous bolus of 100 to 200 mg followed by 50 to 100 mg every six hours or continuous intravenous infusion at a rate of 2 to 4 mg per hour after the loading dose.[3] Early administration reduces mortality and stabilizes systemic physiology during further evaluation.

Fig. 2: Magnetic Resonance Imaging of Pituitary Apoplexy.

Definitive management of the pituitary mass remains an area of clinical debate. Some clinicians favor early surgical decompression in all cases to relieve mass effect and prevent irreversible visual and endocrine damage. Others advocate a selective approach based on neurological status and visual function.[36] Emergency surgical intervention is clearly indicated in patients with declining consciousness progressive neurological deficits hypothalamic involvement or worsening visual acuity and visual field compromise. In these scenarios early decompression offers the best chance for neurological recovery and visual preservation. When visual deficits are present but stable surgical decompression may be delayed. Optimal timing in such cases generally falls within one week of symptom onset to balance surgical benefit against perioperative

risk.[37] Conservative management has been shown to be appropriate for selected patients particularly those with improving or stable ophthalmoplegia and preserved mental status.[38][39] Close clinical and radiological monitoring is required in these cases to detect early deterioration that would necessitate surgical intervention.

The transsphenoidal route remains the most commonly employed surgical approach for pituitary apoplexy. Microscopic endonasal or sublabial transsphenoidal surgery allows direct access to the sellar region with minimal disruption of surrounding structures.(A1) This approach effectively decompresses the optic apparatus and removes hemorrhagic or necrotic tumor tissue. For larger tumors with significant suprasellar extension or lateral invasion into the temporal fossa a transcranial approach may be required. Craniotomy allows wider exposure and facilitates maximal tumor resection in anatomically complex cases. Endoscopic endonasal techniques have gained increasing acceptance in the management of pituitary apoplexy.[32][40][41] These approaches provide enhanced visualization of the sellar and parasellar regions and allow removal of tumor components extending into areas such as the cavernous sinus. Visual outcomes following endoscopic surgery are comparable to those achieved with microscopic techniques. However endocrinological outcomes appear more favorable due to more complete tumor clearance in anatomically challenging regions.[42] Despite these advantages endoscopic surgery may not be feasible in all centers particularly when coordinated expertise between neurosurgery and otolaryngology is unavailable. Management considerations differ in pediatric populations. Pituitary tumor apoplexy in children often follows a more aggressive clinical course than in adults. Early surgical intervention in pediatric cases may reduce recurrence rates and improve long term neurological and endocrine outcomes.[43][44] Recent efforts to standardize treatment have led to the development of a five grade classification system based on clinical severity. This framework may assist clinicians in tailoring management strategies and predicting outcomes on an individual basis.[45]

Differential Diagnosis

The clinical presentation of pituitary apoplexy often overlaps with a range of neurological and ophthalmological disorders that manifest with acute headache visual impairment and ophthalmoplegia. Accurate differentiation is essential because management strategies vary widely and inappropriate intervention may lead to adverse outcomes. Several alternative conditions must therefore be carefully excluded during evaluation. Lesions arising in the sellar and parasellar region represent an important diagnostic consideration. Rathke cleft cysts may present with headache visual disturbance and endocrine dysfunction and can

radiologically mimic pituitary hemorrhage particularly when cyst contents appear hyperdense.[46][47][48] Craniopharyngiomas also involve the suprasellar region and may compress the optic apparatus causing progressive visual symptoms although their clinical course is typically more insidious. Intracranial aneurysms particularly those arising from the internal carotid artery or anterior communicating artery may present with sudden headache and cranial nerve palsies. Misdiagnosis in such cases carries significant risk as surgical strategies differ substantially. Vascular and inflammatory disorders must also be considered. Subarachnoid hemorrhage can present with abrupt severe headache altered consciousness and visual complaints and must be excluded urgently due to its high mortality.[50] Temporal arteritis may cause headache and visual loss particularly in older patients and requires prompt corticosteroid therapy to prevent irreversible blindness.[49] Basilar artery infarction may produce acute neurological deficits including altered mental status and ocular movement abnormalities and represents a distinct cerebrovascular emergency. Hypertensive encephalopathy can present headache visual disturbances and confusion in the context of severe blood pressure elevation and responds primarily to medical blood pressure control. Infectious conditions such as meningitis and encephalitis may present with headache altered mental status and cranial nerve involvement.[51] These disorders often include systemic signs such as fever and require antimicrobial therapy rather than surgical intervention. Cavernous sinus thrombosis also produces ophthalmoplegia headache and visual symptoms due to involvement of cranial nerves within the cavernous sinus and demands urgent anticoagulation and antimicrobial treatment. Other neurological entities can closely resemble pituitary apoplexy. Ophthalmoplegic migraine may cause recurrent headache with transient cranial nerve palsies but lacks structural sellar pathology on imaging.[52] Retrobulbar neuritis presents with visual loss and pain on eye movement and is typically associated with demyelinating disease rather than sellar compression. Distinguishing pituitary apoplexy from these conditions relies on careful clinical assessment targeted laboratory evaluation and appropriate neuroimaging. Accurate diagnosis ensures timely and appropriate management while avoiding unnecessary or harmful interventions.

Prognosis

Pituitary apoplexy carries a variable prognosis that depends largely on the speed of recognition and the adequacy of early management. When diagnosis is delayed or treatment is insufficient the condition can become life threatening due to acute endocrine failure and neurological compromise. Despite this risk reported mortality rates remain relatively low ranging from 1.6% to 1.9%. These

outcomes reflect advances in neuroimaging critical care and prompt endocrine replacement therapy that have improved survival in recent decades. Visual and ocular motor outcomes represent major determinants of functional recovery. In most patients visual acuity visual field deficits and ophthalmoplegia show substantial improvement following either conservative management or surgical decompression. After surgical intervention recovery often begins in the immediate postoperative period and may continue over several weeks as edema resolves and neural structures recover. However, patients who present with severe visual impairment such as monocular or binocular blindness demonstrate a lower likelihood of visual recovery suggesting irreversible optic nerve damage at presentation. The influence of surgical timing on outcome remains debated. Some studies report superior visual recovery when decompression is performed early. Other investigations indicate that improvement in visual deficits resolution of oculomotor nerve palsy recovery from hypopituitarism and improvement of systemic manifestations such as headache and encephalopathy do not show a clear dependence on the timing of surgery.[53][54] These findings support an individualized approach to management based on clinical stability and disease severity rather than rigid surgical timelines. Cranial nerve recovery follows a predictable course. Complete resolution of oculomotor nerve palsy typically occurs within three months. In contrast abducens nerve palsy often requires up to six months for full recovery.[25] Overall visual improvement is reported in approximately 75% to 85% of patients. Restoration of normal vision occurs in about 38% while resolution of preoperative oculomotor palsies is observed in 81% of cases.[32] These outcomes highlight the potential for substantial neurological recovery even in patients with marked initial deficits.

Headache outcomes also show favorable trends. Gross total tumor resection and shorter duration of preoperative headache symptoms correlate with improved postoperative headache relief.[55] Endocrine prognosis remains less favorable. Long term hormonal replacement therapy is required in nearly 80% of patients due to persistent hypopituitarism.[1][23][54] Recovery of full pituitary function occurs less frequently and often remains incomplete despite optimal treatment. In selected cases managed conservatively spontaneous tumor regression has been documented and surgical intervention was not required.[56][57] This phenomenon is thought to result from ischemic necrosis of adenomatous tissue following the apoplectic event. Overall prognosis in pituitary apoplexy is favorable with appropriate management although long term endocrine deficits remain common.

Complications

Pituitary apoplexy can lead to multiple acute and chronic complications that impact neurological and endocrine function. Visual loss is among the most significant complications, resulting from compression of the optic nerves or chiasm, and may range from mild field defects to complete blindness. Ophthalmoplegia and ptosis occur due to involvement of cranial nerves within the cavernous sinus, most commonly affecting the oculomotor nerve, and can cause diplopia and impaired eye movement. Acute adrenal insufficiency or adrenal crisis develops in many patients because of ACTH deficiency, leading to hypotension, hypoglycemia, nausea, and potential shock. Increased intracranial pressure may arise from rapid tumor expansion or hemorrhage, producing headache, altered consciousness, and risk of herniation. Diabetes insipidus can occur due to posterior pituitary involvement, causing polyuria and electrolyte imbalance. Rarely, bilateral cerebral infarcts have been reported, likely due to compromised perfusion of cerebral arteries following apoplectic events.^{[58][59][60]} Recognition of these complications is critical to prevent long-term morbidity.

Consultations

Management of pituitary apoplexy requires a multidisciplinary approach due to the complex interplay of neurological, endocrine, and ophthalmological involvement. Neurosurgery consultation is essential for assessing the need for urgent decompression, determining surgical approach, and guiding postoperative care. Hospitalist involvement ensures stabilization of systemic complications, fluid and electrolyte management, and coordination of intensive care support. Ophthalmology input is critical for evaluating visual acuity, visual fields, and cranial nerve function, and for monitoring recovery or progression of ocular deficits. Endocrinology consultation is required to assess pituitary hormone deficiencies, initiate appropriate replacement therapy, and monitor long-term endocrine function. These consultations allow for coordinated decision making regarding conservative versus surgical management, timing of intervention, and ongoing follow-up, which is essential for optimizing outcomes and reducing both acute and chronic complications associated with pituitary apoplexy.

Enhancing Healthcare Team Outcomes

Optimal management of pituitary apoplexy depends on rapid recognition, timely intervention, and coordinated multidisciplinary care. Physicians—including endocrinologists, neurosurgeons, ophthalmologists, and emergency medicine specialists—must identify the abrupt onset of severe headache, visual deficits, and altered mental status, and initiate prompt imaging and laboratory evaluation. High-acuity care requires continuous monitoring of neurological and visual status,

hemodynamic stabilization, and administration of high-dose corticosteroids to prevent adrenal crisis. Nurses play a critical role in executing these interventions, monitoring for deterioration, and providing patient support, while pharmacists ensure accurate dosing, check for drug interactions, and maintain rapid access to essential medications. Rehabilitation specialists contribute to early functional recovery planning for patients with residual visual, cranial nerve, or endocrine deficits. Effective interprofessional communication is essential for patient safety and successful outcomes. Multidisciplinary response pathways linking emergency, endocrine, and neurosurgical teams facilitate immediate imaging, endocrine stabilization, and surgical decision-making. Structured handoffs, shared electronic medical records, and real-time updates ensure continuity of care during critical transitions. Early involvement of ophthalmology guides assessing visual prognosis and determines the need for follow-up interventions. By aligning expertise across specialties, healthcare teams can reduce delays in care, minimize complication risks, and enhance both short- and long-term recovery. Coordinated communication also improves patient confidence, ensuring that families and patients understand care plans, anticipated recovery, and the importance of follow-up. A collaborative, team-based approach is therefore fundamental to optimizing outcomes in pituitary apoplexy.

Conclusion:

Pituitary apoplexy represents a complex clinical emergency requiring rapid identification and coordinated multidisciplinary care. Despite its rarity, delayed diagnosis can lead to irreversible visual loss, persistent hypopituitarism, and life-threatening adrenal crisis. Advances in neuroimaging, particularly magnetic resonance imaging, have improved diagnostic accuracy, while early administration of high-dose corticosteroids has significantly reduced mortality. Individualized treatment strategies—balancing conservative management with timely surgical decompression—optimize neurological and visual outcomes. Ongoing collaboration among emergency physicians, endocrinologists, neurosurgeons, nurses, and ophthalmologists remains essential for improving both immediate and long-term patient outcomes.

References:

1. Ranabir S, Baruah MP. Pituitary apoplexy. Indian journal of endocrinology and metabolism. 2011 Sep;15 Suppl 3(Suppl3):S188-96. doi: 10.4103/2230-8210.84862.
2. Briet C, Salenave S, Bonneville JF, Laws ER, Chanson P. Pituitary Apoplexy. Endocrine reviews. 2015 Dec;36(6):622-45. doi: 10.1210/er.2015-1042.
3. Briet C, Salenave S, Chanson P. Pituitary apoplexy. Endocrinology and metabolism

clinics of North America. 2015 Mar;44(1):199-209. doi: 10.1016/j.ecl.2014.10.016.

4. BROUGHAM M, HEUSNER AP, ADAMS RD. Acute degenerative changes in adenomas of the pituitary body--with special reference to pituitary apoplexy. *Journal of neurosurgery*. 1950 Sep;7(5):421-39.
5. Bioussé V, Newman NJ, Oyesiku NM. Precipitating factors in pituitary apoplexy. *Journal of neurology, neurosurgery, and psychiatry*. 2001 Oct;71(4):542-5.
6. Kuzu F, Unal M, Gul S, Bayraktaroglu T. Pituitary Apoplexy due to the Diagnostic Test in a Cushing's Disease Patient. *Turkish neurosurgery*. 2018;28(2):323-325. doi: 10.5137/1019-5149.JTN.16730-15.1.
7. Gheorghe AM, Trandafir AI, Ionovici N, Carsote M, Nistor C, Popa FL, Stanciu M. Pituitary Apoplexy in Patients with Pituitary Neuroendocrine Tumors (PitNET). *Biomedicines*. 2023 Feb 23;11(3):. doi: 10.3390/biomedicines11030680.
8. Ghadirian H, Shirani M, Ghazi-Mirsaeed S, Mohebi S, Alimohamadi M. Pituitary Apoplexy during Treatment of Prolactinoma with Cabergoline. *Asian journal of neurosurgery*. 2018 Jan-Mar;13(1):93-95. doi: 10.4103/1793-5482.181130.
9. Aydin B, Aksu O, Asci H, Kayan M, Korkmaz H. A RARE CAUSE OF PITUITARY APOPLEXY: CABERGOLINE THERAPY. *Acta endocrinologica (Bucharest, Romania)* : 2005). 2018 Jan-Mar;14(1):113-116. doi: 10.4183/aeb.2018.113.
10. Keane F, Egan AM, Navin P, Brett F, Denmedy MC. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy. *Endocrinology, diabetes & metabolism case reports*. 2016;2016():160021. doi: 10.1530/EDM-16-0021.
11. Joo C, Ha G, Jang Y. Pituitary apoplexy following lumbar fusion surgery in prone position: A case report. *Medicine*. 2018 May;97(19):e0676. doi: 10.1097/MD.00000000000010676.
12. Akakin A, Yılmaz B, Ekşioğlu M, Kılıç T. A case of pituitary apoplexy following posterior lumbar fusion surgery. *Journal of neurosurgery. Spine*. 2015 Nov;23(5):598-601. doi: 10.3171/2015.3.SPINE14792.
13. Jemel M, Kandara H, Riahi M, Gharbi R, Nagi S, Kamoun I. Gestational pituitary apoplexy: Case series and review of the literature. *Journal of gynecology obstetrics and human reproduction*. 2019 Dec;48(10):873-881. doi: 10.1016/j.jogoh.2019.05.005.
14. Annamalai AK, Jeyachitra G, Jeyamithra A, Ganeshkumar M, Srinivasan KG, Gurnell M. Gestational Pituitary Apoplexy. *Indian journal of endocrinology and metabolism*. 2017 May-Jun;21(3):484-485. doi: 10.4103/ijem.IJEM_8_17.
15. Yu J, Li Y, Quan T, Li X, Peng C, Zeng J, Liang S, Huang M, He Y, Deng Y. Initial Gamma Knife radiosurgery for nonfunctioning pituitary adenomas: results from a 26-year experience. *Endocrine*. 2020 May;68(2):399-410. doi: 10.1007/s12020-020-02260-1.
16. Ly S, Naman A, Chaufour-Higelin B, Patey M, Arndt C, Delemer B, Litre CF. Pituitary apoplexy and rivaroxaban. *Pituitary*. 2017 Dec;20(6):709-710. doi: 10.1007/s11102-017-0828-4.
17. Thomas M, Robert A, Rajole P, Robert P. A Rare Case of Pituitary Apoplexy Secondary to Dengue Fever-induced Thrombocytopenia. *Cureus*. 2019 Aug 5;11(8):e5323. doi: 10.7759/cureus.5323.
18. Balaparameswara Rao SJ, Savardekar AR, Nandeesh BN, Arivazhagan A. Management dilemmas in a rare case of pituitary apoplexy in the setting of dengue hemorrhagic fever. *Surgical neurology international*. 2017;8():4. doi: 10.4103/2152-7806.198731.
19. Uneda A, Hirashita K, Yunoki M, Yoshino K, Date I. Pituitary adenoma apoplexy associated with vardenafil intake. *Acta neurochirurgica*. 2019 Jan;161(1):129-131. doi: 10.1007/s00701-018-3763-x.
20. Kajal S, Ahmad YES, Halawi A, Gol MAK, Ashley W. Pituitary apoplexy: a systematic review of non-gestational risk factors. *Pituitary*. 2024 Aug;27(4):320-334. doi: 10.1007/s11102-024-01412-0.
21. Mohr G, Hardy J. Hemorrhage, necrosis, and apoplexy in pituitary adenomas. *Surgical neurology*. 1982 Sep;18(3):181-9.
22. Mohanty S, Tandon PN, Banerji AK, Prakash B. Haemorrhage into pituitary adenomas. *Journal of neurology, neurosurgery, and psychiatry*. 1977 Oct;40(10):987-91.
23. Murad-Kejbou S, Eggenberger E. Pituitary apoplexy: evaluation, management, and prognosis. *Current opinion in ophthalmology*. 2009 Nov;20(6):456-61. doi: 10.1097/ICU.0b013e3283319061.
24. Fernández-Balsells MM, Murad MH, Barwise A, Gallegos-Orozco JF, Paul A, Lane MA, Lampropulos JF, Natividad I, Perestelo-Pérez L, Ponce de León-Lovatón PG, Erwin PJ, Carey J, Montori VM. Natural history of nonfunctioning pituitary

adenomas and incidentalomas: a systematic review and metaanalysis. *The Journal of clinical endocrinology and metabolism*. 2011 Apr;96(4):905-12. doi: 10.1210/jc.2010-1054.

25. Ricciuti R, Nocchi N, Arnaldi G, Polonara G, Luzi M. Pituitary Adenoma Apoplexy: Review of Personal Series. *Asian journal of neurosurgery*. 2018 Jul-Sep;13(3):560-564. doi: 10.4103/ajns.AJNS_344_16.

26. Nawar RN, AbdelMannan D, Selman WR, Arafah BM. Pituitary tumor apoplexy: a review. *Journal of intensive care medicine*. 2008 Mar-Apr;23(2):75-90. doi: 10.1177/0885066607312992.

27. Cardoso ER, Peterson EW. Pituitary apoplexy: a review. *Neurosurgery*. 1984 Mar;14(3):363-73.

28. Rovit RL, Fein JM. Pituitary apoplexy: a review and reappraisal. *Journal of neurosurgery*. 1972 Sep;37(3):280-8.

29. Epstein S, Pimstone BL, De Villiers JC, Jackson WP. Pituitary apoplexy in five patients with pituitary tumours. *British medical journal*. 1971 May 1;2(5756):267-70.

30. Grzywotz A, Kleist B, Möller LC, Hans VH, Görlicke S, Sure U, Müller O, Kreitschmann-Andermahr I. Pituitary apoplexy - A single center retrospective study from the neurosurgical perspective and review of the literature. *Clinical neurology and neurosurgery*. 2017 Dec;163():39-45. doi: 10.1016/j.clineuro.2017.10.006.

31. Wichańska-Lubińska M, Kozera G. Pituitary apoplexy. *Neurologia i neurochirurgia polska*. 2019;53(6):413-420. doi: 10.5603/PJNNs.a2019.0054.

32. Zoli M, Milanese L, Faustini-Fustini M, Guaraldi F, Asioli S, Zenesini C, Righi A, Frank G, Foschini MP, Sturiale C, Pasquini E, Mazzatorta D. Endoscopic Endonasal Surgery for Pituitary Apoplexy: Evidence On a 75-Case Series From a Tertiary Care Center. *World neurosurgery*. 2017 Oct;106():331-338. doi: 10.1016/j.wneu.2017.06.117.

33. Barkhoudarian G, Kelly DF. Pituitary Apoplexy. *Neurosurgery clinics of North America*. 2019 Oct;30(4):457-463. doi: 10.1016/j.nec.2019.06.001.

34. Veldhuis JD, Hammond JM. Endocrine function after spontaneous infarction of the human pituitary: report, review, and reappraisal. *Endocrine reviews*. 1980 Winter;1(1):100-7.

35. Iglesias P. Pituitary Apoplexy: An Updated Review. *Journal of clinical medicine*. 2024 Apr 24;13(9):. doi: 10.3390/jcm13092508.

36. Donegan D, Erickson D. Revisiting Pituitary Apoplexy. *Journal of the Endocrine Society*. 2022 Sep 1:6(9):bvac113. doi: 10.1210/jendso/bvac113.

37. Brown NJ, Patel S, Gendreau J, Abraham ME. The role of intervention timing and treatment modality in visual recovery following pituitary apoplexy: a systematic review and meta-analysis. *Journal of neuro-oncology*. 2024 Dec;170(3):469-482. doi: 10.1007/s11060-024-04717-z.

38. Almeida JP, Sanchez MM, Karekezi C, Warsi N, Fernández-Gajardo R, Panwar J, Mansouri A, Suppiah S, Nassiri F, Nejad R, Kucharczyk W, Ridout R, Joaquim AF, Gentili F, Zadeh G. Pituitary Apoplexy: Results of Surgical and Conservative Management Clinical Series and Review of the Literature. *World neurosurgery*. 2019 Oct;130():e988-e999. doi: 10.1016/j.wneu.2019.07.055.

39. Seo Y, Kim YH, Dho YS, Kim JH, Kim JW, Park CK, Kim DG. The Outcomes of Pituitary Apoplexy with Conservative Treatment: Experiences at a Single Institution. *World neurosurgery*. 2018 Jul;115():e703-e710. doi: 10.1016/j.wneu.2018.04.139.

40. Pangal DJ, Chesney K, Memel Z, Bonney PA, Strickland BA, Carmichael J, Shiroishi M, Jason Liu CS, Zada G. Pituitary Apoplexy Case Series: Outcomes After Endoscopic Endonasal Transsphenoidal Surgery at a Single Tertiary Center. *World neurosurgery*. 2020 May;137():e366-e372. doi: 10.1016/j.wneu.2020.01.204.

41. Zhan R, Li X, Li X. Endoscopic Endonasal Transsphenoidal Approach for Apoplectic Pituitary Tumor: Surgical Outcomes and Complications in 45 Patients. *Journal of neurological surgery. Part B, Skull base*. 2016 Feb;77(1):54-60. doi: 10.1055/s-0035-1560046.

42. Teixeira JC, Lavrador J, Simão D, Miguéns J. Pituitary Apoplexy: Should Endoscopic Surgery Be the Gold Standard? *World neurosurgery*. 2018 Mar;111():e495-e499. doi: 10.1016/j.wneu.2017.12.103.

43. Culpin E, Crank M, Igra M, Connolly DJA, Dimitri P, Mirza S, Sinha S. Pituitary tumour apoplexy within prolactinomas in children: a more aggressive condition? *Pituitary*. 2018 Oct;21(5):474-479. doi: 10.1007/s11102-018-0900-8.

44. Zhang N, Zhou P, Meng Y, Ye F, Jiang S. A retrospective review of 34 cases of pediatric pituitary adenoma. *Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery*. 2017

Nov:33(11):1961-1967. doi: 10.1007/s00381-017-3538-3.

45. Jho DH, Biller BM, Agarwalla PK, Swearingen B. Pituitary apoplexy: large surgical series with grading system. *World neurosurgery*. 2014 Nov;82(5):781-90. doi: 10.1016/j.wneu.2014.06.005.

46. Martinez Santos J, Hannay M, Olar A, Eskandari R. Rathke's Cleft Cyst Apoplexy in Two Teenage Sisters. *Pediatric neurosurgery*. 2019;54(6):428-435. doi: 10.1159/000503112.

47. Jung HN, Kim ST, Kong DS, Suh SI, Ryoo I. Rathke Cleft Cysts with Apoplexy-Like Symptoms: Clinicoradiologic Comparisons with Pituitary Adenomas with Apoplexy. *World neurosurgery*. 2020 Oct;142():e1-e9. doi: 10.1016/j.wneu.2020.03.086.

48. Schooner L, Wedemeyer MA, Bonney PA, Lin M, Hurth K, Mathew A, Liu CJ, Shiroishi M, Carmichael JD, Weiss MH, Zada G. Hemorrhagic Presentation of Rathke Cleft Cysts: A Surgical Case Series. *Operative neurosurgery (Hagerstown, Md.)*. 2020 May 1:18(5):470-479. doi: 10.1093/ons/opz239.

49. Pedro B, Patrícia T, Aldomiro F. Pituitary Apoplexy May Be Mistaken for Temporal Arteritis. *European journal of case reports in internal medicine*. 2019;6(11):001261. doi: 10.12890/2019_001261.

50. Choudhury M, Eligar V, DeLloyd A, Davies JS. A case of pituitary apoplexy masquerading as subarachnoid hemorrhage. *Clinical case reports*. 2016 Mar;4(3):255-7. doi: 10.1002/ccr3.488.

51. Law-Ye B, Pyatigorskaya N, Leclercq D. Pituitary Apoplexy Mimicking Bacterial Meningitis with Intracranial Hypertension. *World neurosurgery*. 2017 Jan;97():748.e3-748.e5. doi: 10.1016/j.wneu.2016.10.032.

52. Shabas D, Sheikh HU, Gilad R. Pituitary Apoplexy Presenting as Status Migrainosus. *Headache*. 2017 Apr;57(4):641-642. doi: 10.1111/head.13046.

53. Abdulbaki A, Kanaan I. The impact of surgical timing on visual outcome in pituitary apoplexy: Literature review and case illustration. *Surgical neurology international*. 2017;8():16. doi: 10.4103/2152-7806.199557.

54. Rutkowski MJ, Kunwar S, Blevins L, Aghi MK. Surgical intervention for pituitary apoplexy: an analysis of functional outcomes. *Journal of neurosurgery*. 2018 Aug;129(2):417-424. doi: 10.3171/2017.2.JNS1784.

55. Suri H, Dougherty C. Presentation and Management of Headache in Pituitary Apoplexy. *Current pain and headache reports*. 2019 Jul 29;23(9):61. doi: 10.1007/s11916-019-0798-5.

56. Eichberg DG, Di L, Shah AH, Kaye WA, Komotar RJ. Spontaneous preoperative pituitary adenoma resolution following apoplexy: a case presentation and literature review. *British journal of neurosurgery*. 2020 Oct;34(5):502-507. doi: 10.1080/02688697.2018.1529737.

57. Souteiro P, Belo S, Carvalho D. A rare case of spontaneous Cushing disease remission induced by pituitary apoplexy. *Journal of endocrinological investigation*. 2017 May;40(5):555-556. doi: 10.1007/s40618-017-0645-7.

58. Gambaracci G, Rondoni V, Guercini G, Floridi P. Pituitary apoplexy complicated by vasospasm and bilateral cerebral infarction. *BMJ case reports*. 2016 Jun 21:2016(). doi: 10.1136/bcr-2016-216186.

59. Abbas MS, AlBerawi MN, Al Bozom I, Shaikh NF, Salem KY. Unusual Complication of Pituitary Macroadenoma: A Case Report and Review. *The American journal of case reports*. 2016 Oct 6:17():707-711.

60. Zou Z, Liu C, Sun B, Chen C, Xiong W, Che C, Huang H. Surgical treatment of pituitary apoplexy in association with hemispheric infarction. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia*. 2015 Oct;22(10):1550-4. doi: 10.1016/j.jocn.2015.03.049.