

Post-Discharge Transition and Readmission Prevention: The Role of Follow-Up and Remote Monitoring

Amani Ayed Madee Alshahrani ⁽¹⁾, Sultan Abdullah Alhuwaymil ⁽²⁾, Salem Naji Aldawsari ⁽³⁾, Mashael Kamal Binsaeed ⁽⁴⁾, Ekram Abdulhamid Hamed Khalil ⁽⁵⁾, Abdullah Mohammed Saad Al-Qahtani ⁽⁶⁾, Awatef Mohammed Alnujaidi ⁽⁷⁾, Magdi Mohammed Ali Almazroi ⁽⁸⁾, Mamdouh Hassan Attia Alnkhali ⁽⁹⁾, Hanadi Qassim Hamza Alnakhli ⁽¹⁰⁾, Fahd Mohammed Nasser Humedi ⁽¹¹⁾, Fayez Mohammed Abdullah Shouk ⁽¹²⁾

(1) King Abdullah Hospital – Bisha – Ministry of Health, Saudi Arabia,

(2) Tabrak PHC – Al-Quwayiyah Hospital – Riyadh First Health Cluster, Ministry of Health, Saudi Arabia,

(3) 3Riyadh – Ministry of Health, Saudi Arabia,

(4) Riyadh Specialized Dental Centre – Ministry of Health, Saudi Arabia,

(5) Madinah Health Cluster – Regional Laboratory – Ministry of Health, Saudi Arabia,

(6) Ruwaydah Al-Ard General Hospital – Ministry of Health, Saudi Arabia,

(7) Aljaber ENT Hospital – Al Ahsa – Ministry of Health, Saudi Arabia,

(8) Khulais General Hospital – Ministry of Health, Saudi Arabia,

(9) Maternity and Children Hospital – Medina – Ministry of Health, Saudi Arabia,

(10) Medina Health Center – Primary Health Care (Al-Hijra), Ministry of Health, Saudi Arabia,

(11) Altuwal General Hospital – Ministry of Health, Saudi Arabia,

(12) Altuwal General Hospital – Jazan – Ministry of Health, Saudi Arabia

Abstract

Background: The transition from hospital to home represents a period of profound vulnerability, where fragmented care, medication discrepancies, and poor symptom monitoring contribute to high rates of preventable hospital readmissions. Approximately 15-20% of Medicare beneficiaries are readmitted within 30 days of discharge, representing a major clinical and financial burden. **Aim:** This narrative review synthesizes evidence from 2010-2024 on integrated, technology-enhanced systems designed to support patients during the post-discharge transition, with a specific focus on preventing avoidable readmissions. **Methods:** A comprehensive search of PubMed, CINAHL, Scopus, and Web of Science databases was conducted. Thematic analysis integrated literature from health services research, nursing science, health informatics, and operations management. **Results:** Evidence demonstrates that successful readmission reduction requires a multi-component intervention spanning: 1) Health Services Management structures (dedicated transition programs, risk stratification); 2) Health Informatics tools (automated alerts, telehealth, predictive analytics); 3) Nursing and Health Assistant follow-up (structured phone calls, home visits); 4) Diagnostic Service Coordination (scheduling and communicating test results); and 5) Administrative Coordination (appointment and equipment logistics). Programs that bundle these elements, particularly for high-risk patients, consistently achieve 20-40% reductions in 30-day readmissions. **Conclusion:** Preventing readmissions is not a singular clinical intervention but a system engineering challenge. It demands the seamless integration of proactive clinical monitoring, enabled by health IT and supported by meticulous logistical coordination. Future success depends on standardizing these integrated pathways and aligning payment models to reward transitional care.

Keywords: care transitions, hospital readmission, telehealth, transitional care, interdisciplinary care

Introduction

The moment a patient crosses the threshold from hospital to home, they enter what has been termed the "post-discharge abyss"—a period of heightened clinical risk and systemic fragmentation. Despite advances in acute care, the transition following hospitalization remains dangerously unstable, with approximately 15-20% of Medicare beneficiaries and 25% of older adults with heart failure readmitted within 30 days (Hasan et al., 2021; Desai & Stevenson, 2012). These readmissions are

not merely statistical outcomes; they represent patient suffering, functional decline, and staggering economic cost, accounting for over \$26 billion annually in potentially preventable Medicare spending (Curto et al., 2019). The drivers of readmission are multifaceted and interconnected: inadequate patient and caregiver education, unresolved symptoms, medication errors, missed follow-up appointments, poor communication between hospital and community providers, and unaddressed social determinants of health (SDOH)

such as transportation barriers or food insecurity (Berkowitz et al., 2018; Kripalani et al., 2014).

Historically, the responsibility for navigating this complex transition fell disproportionately on patients and their families, armed with often-incomprehensible discharge instructions and a tenuous link to overburdened primary care (Diamond & DeVore, 2022). The result was a reactive system where readmission was frequent, expected, and financially incentivized under fee-for-service models. The implementation of the Hospital Readmissions Reduction Program (HRRP) under the Affordable Care Act shifted this dynamic, penalizing hospitals for excess readmissions and catalyzing widespread investment in transition-of-care programs (Zuckerman et al., 2016). However, early efforts were often siloed, inconsistently applied, and lacked the technological infrastructure and multidisciplinary coordination necessary for sustainable success.

This narrative review synthesizes the contemporary evidence (2010-2024) to argue that effective post-discharge transition and readmission prevention demand an integrated, system-level approach. It moves beyond evaluating isolated interventions to analyze how five critical domains must converge: Health Services Management (program design, leadership, and resource allocation); Health Informatics (the digital tools enabling proactive monitoring and communication); Nursing and Health Assistant roles (the human touchpoints for assessment and support); Diagnostic Service Coordination (ensuring continuity of diagnostic monitoring); and Administrative Health Care Assistant functions (the logistical glue binding the process). The central thesis is that readmission is not primarily a failure of clinical medicine but a failure of care coordination. Preventing it requires building a reliable, patient-centered bridge across the transition, constructed from interoperable technology, clearly defined human roles, and meticulous operational processes. This review will delineate the components of this bridge, evaluate the evidence for their effectiveness, and propose a framework for sustainable implementation.

The Management Foundation

The architecture of an effective transition program is established by health services management. This involves strategic planning, resource allocation, and the creation of structures that enable interdisciplinary work. A foundational management task is risk stratification. Not all patients have equal readmission risk; therefore, resources must be targeted. Management implements validated predictive models, such as the LACE index (Length of stay, Acuity of admission, Comorbidities, Emergency department visits) or the HOSPITAL score, to identify high-risk patients who will benefit most from intensive transition services (van

Walraven et al., 2010; Long et al., 2022). This allows for tiered interventions, optimizing resource use.

Management is also responsible for designing and staffing dedicated transition programs. This often involves creating Transitional Care Nurse (TCN) or Nurse Navigator roles, community paramedicine partnerships, or embedded care coordination teams (Naylor et al., 2017). Crucially, management must foster a culture of accountability across the continuum, breaking down silos between inpatient and outpatient services. This includes establishing formal partnerships with skilled nursing facilities, home health agencies, and primary care clinics, with shared protocols and communication channels (Coffey et al., 2019). Finally, management leverages data analytics to monitor program performance—tracking readmission rates, follow-up call completion, and patient satisfaction—and iteratively refines processes based on this feedback (Yeung et al., 2021). Without this managerial backbone, transitional care efforts remain ad hoc and unscalable.

Health Informatics as the Enabling Infrastructure

Health informatics provides the central nervous system for modern transition programs, moving care coordination from a paper-based, memory-driven activity to a proactive, data-driven system. Key applications include:

Electronic health records (EHRs) can be configured to automatically calculate readmission risk scores using real-time clinical data and flag high-risk patients for care managers before discharge (Shams et al., 2015). This shifts intervention from reactive to anticipatory. Informatics enables the creation of automated discharge checklists and task lists. Upon discharge, the system can automatically generate a referral to a home health agency, populate a pharmacist-led medication reconciliation queue, and trigger an entry on a nurse navigator's call list for 48-hour follow-up (Harrison et al., 2014). This ensures no step is missed due to human oversight.

Telehealth and Remote Patient Monitoring (RPM) platforms allow patients to transmit vital signs (weight, blood pressure, oxygen saturation, glucose) from home using connected devices. Data flows to a centralized dashboard monitored by nurses, who can identify clinical deterioration—such as rising daily weights in a heart failure patient—and intervene before a crisis necessitates an ED visit (Noah et al., 2018). Structured video visits replace or supplement some in-person follow-ups, improving access, especially for rural or mobility-impaired patients (Hirschman et al., 2015). Secure messaging via patient portals facilitates direct communication. Automated medication reminders, educational videos tailored to the discharge diagnosis, and digital symptom checklists empower patients in self-management and provide a channel for concerned caregivers to reach the care team (O'Brien et al., 2014).

The Human Connection

Technology is an enabler, but the therapeutic relationship and clinical assessment provided by nursing staff and health assistants (HAs) remain irreplaceable. Their roles are complementary and structured.

The Clinical Conductor

Transitional care nurses conduct structured follow-up, often beginning with a phone call within 48-72 hours of discharge. This call follows a protocol to assess for clinical warning signs (e.g., fever, worsening shortness of breath), confirm medication understanding and access, verify follow-up appointment schedules, and identify emergent social needs (Mitchell et al., 2016). Advanced practice registered nurses (APRNs) may conduct more comprehensive home visits for the highest-risk patients, performing physical assessments, reconciling medications in the home environment, and providing tailored education (Naylor et al., 2017). Nurses serve as the central hub, interpreting data from RPM platforms, triaging patient-reported symptoms, and coordinating with physicians and pharmacists (LaBedz et al., 2022).

The Extended Eyes and Ears

Health assistants extend the reach of the nursing team. They may perform routine vital sign checks during home health visits, assist with activities of daily living while observing for functional decline, and provide reinforcement of discharge education (Kalisch et al., 2014). Their consistent, supportive presence builds trust and often allows them to detect subtle changes in a patient's condition or home environment that might precipitate readmission. They are crucial for providing the sustained, low-acuity support that frees RNs and APRNs to focus on complex clinical decision-making (John et al., 2016).

The Continuity of Diagnostics

A critical but often overlooked component of transitional care is the management of post-discharge diagnostic testing. Patients are frequently discharged with instructions for follow-up lab work (e.g., INR for warfarin, creatinine for renal function, BNP for heart failure) or imaging (e.g., outpatient

ultrasound, repeat chest X-ray). Failures in this loop are common and dangerous.

Medical Laboratory and Radiology Roles

The diagnostic departments play a key role in transition success by facilitating easy access and clear communication. This can involve: creating priority scheduling slots for recently discharged patients; establishing clear protocols for communicating critical results not just to the ordering physician but also to the transition care team; and supporting point-of-care testing in the home or clinic setting (e.g., INR machines for anticoagulation clinics) (Mashhadi et al., 2021). When a nurse navigator knows that a patient's potassium result is pending, they can prioritize a follow-up call to discuss the result and any medication adjustments, closing a potentially dangerous information gap (Becker et al., 2021).

Administrative Health Care Assistant Coordination

The smooth execution of the transition plan depends entirely on meticulous logistics, typically managed by administrative health care assistants (AHCAs). Their work is the operational glue:

AHCAs schedule the mandatory follow-up appointment with the primary care provider or specialist within 7-14 days of discharge, a factor strongly linked to lower readmission rates (Lee et al., 2016). They coordinate complex multi-appointment schedules and handle insurance pre-authorizations. They ensure that oxygen tanks, hospital beds, walkers, or wound care supplies are delivered and set up in the home *before* the patient arrives. They serve as the liaison between the hospital, DME companies, and home health agencies, resolving delays that could compromise recovery (Qiu et al., 2022). AHCAs are often the first point of contact for confused patients or families calling with logistical questions. They provide clear instructions, mail informational packets, and serve as a warm, accessible resource, reducing patient anxiety and preventing minor issues from escalating (Table 1). Figure 1 illustrates the five interdependent domains required to prevent avoidable hospital readmissions: Health Services Management, Health Informatics, Nursing & Health Assistant Follow-Up, Diagnostic Service Coordination, and Administrative Coordination.

Table 1: The Multidisciplinary Post-Discharge Transition Team: Roles and Functions

Domain/ Role	Core Functions in Readmission Prevention	Key Tools & Technologies	Outcome Metrics
Health Services Management	Program design & leadership; Risk stratification; Resource allocation; Partner network development.	Predictive analytics (LACE, HOSPITAL); Performance dashboards; Contracting systems.	Risk-stratification accuracy; Program ROI; 30-day readmission rate trend.
Health Informatics	Automating workflows; Enabling RPM & telehealth; Facilitating data exchange & patient engagement.	EHR-integrated risk scores; Automated discharge task lists; RPM platforms; Patient portals.	% high-risk pts auto-flagged; RPM adherence rates; Portal activation/use rates.
Nursing	Structured post-discharge calls;	Structured call scripts;	Call completion rate (%)

(RN/APRN)	Home visits; Clinical triage of RPM data; Medication reconciliation; Patient/caregiver education.	Home visit assessment tools; Secure messaging; Telehealth video platforms.	within 72hrs); Problems identified/acted upon; Patient experience scores.
Health Assistant (CNA/PN/PSW)	Reinforcement of education; ADL support & observation; Routine vital sign checks in home; Reporting changes to RN.	Basic vital sign equipment; Standardized observation checklists; Mobile communication devices.	Frequency of home visits; Number of concerning findings reported.
Diagnostic Services (Lab/Radiology)	Prioritizing post-discharge testing; Ensuring timely communication of results.	Priority scheduling protocols; Critical result alerting systems; Point-of-care testing devices.	Time to result for key post-dc tests; % of results communicated to transition team.
Administrative HCA	Scheduling follow-up appointments; Coordinating DME & home health; Handling patient logistics queries.	Scheduling software; DME vendor portals; Patient communication logs.	% with PCP appt within 14 days; DME set-up prior to dc; Patient call resolution time.

Figure 1. Integrated Post-Discharge Transition-of-Care Framework
Synthesis of Impact

The evidence robustly supports that integrated, multi-component transition programs significantly reduce 30-day readmissions, particularly for targeted high-risk populations like those with heart failure, COPD, and pneumonia (Machado, 2019). Systematic reviews and meta-analyses conclude that effective programs commonly include a combination of: pre-discharge patient education, post-discharge follow-up (phone or visit), medication reconciliation and management, and timely primary care follow-up (Leppin et al., 2014; Hansen et al., 2011).

The most impactful models are those that bundle these elements and are led by dedicated personnel. For example, the evidence-based Transitional Care Model (TCM) developed by Mary Naylor, which employs an APRN for in-hospital planning and home follow-up, has demonstrated consistent 30-50% reductions in

readmissions and cost savings (Naylor et al., 2017). Similarly, hospital-at-home models, which substitute acute inpatient care with intensive home-based services, show promise in reducing readmissions by avoiding iatrogenic risks and maintaining patients in a preferred environment (Levine et al., 2020).

Remote monitoring, when integrated with clinical support, is particularly effective for chronic heart failure, reducing heart failure-related readmissions by approximately 20-30% (Koehler et al., 2018; Winkler et al., 2021). However, technology alone is insufficient; its value is unlocked only when the data is monitored by clinicians empowered to act (Noah et al., 2018).

Barriers and Implementation Challenges

Despite strong evidence, widespread implementation faces significant hurdles (see Table 2). Financial sustainability remains a primary challenge, as many transitional care activities (e.g., nurse navigation calls, RPM setup) are poorly reimbursed under traditional fee-for-service models (Zejnilović et al., 2016). Workforce shortages in nursing and home health constrain program scalability. Health IT interoperability issues persist, making it difficult for hospital-based transition teams to access data from primary care EHRs and vice versa, and for RPM data to flow seamlessly into clinical workflows (Shams et al., 2015). Patient-level barriers include digital literacy, language differences, and mistrust of healthcare systems, which can limit the effectiveness of technology-enabled solutions (O'Brien et al., 2014).

Table 2: Key Barriers and Facilitators for Implementing Integrated Transition Programs

Domain	Key Barriers	Critical Facilitators & Solutions
Financial Reimbursement	& Fee-for-service payments don't cover care coordination; Upfront costs for RPM technology; Uncertain ROI for hospitals under bundled payments.	Value-based payment models (ACOs, bundles); CMS waiver programs (e.g., Acute Hospital Care at Home); Grants & pilot funding for innovation.
Workforce & Training	Nursing/HA shortages; Lack of	Creation of dedicated transition roles;

Technology & Interoperability	training in transitional care principles; High burnout among care coordinators.	Interprofessional education; Use of team-based models to distribute workload; Competitive compensation.
Operational & Cultural	Fragmented EHRs; RPM data silos; Lack of integration with clinician workflow; Patient digital access/literacy gaps.	Adoption of interoperability standards (FHIR); Designing alerts for <i>actionable</i> data; Providing patients with simple, user-friendly devices & tech support.
Patient & Social Factors	Silos between inpatient/outpatient teams; Lack of clear ownership for transition process; Resistance to standardized protocols.	Strong executive leadership; Shared goals & accountability metrics; Co-designed workflows with frontline staff; Regular interdisciplinary huddles.

Conclusion and Future Directions

Preventing avoidable hospital readmissions is a defining challenge for modern healthcare systems, sitting at the intersection of clinical quality, patient experience, and financial sustainability. This review demonstrates that success is not found in a single "magic bullet" but in the thoughtful integration of management structures, information technology, clinical expertise, and logistical support. The post-discharge transition must be reconceptualized not as an ending, but as an active, monitored phase of care—a *clinical pathway that extends into the home*.

The future of readmission prevention lies in moving beyond isolated hospital-based programs toward community-integrated health ecosystems. This involves deeper partnerships with community-based organizations to address SDOH, broader adoption of risk-sharing payment models that align incentives across the continuum, and the maturation of interoperable health IT that provides a unified patient record accessible to all care team members, including the patient (Zejnilović et al., 2016).

Ultimately, reducing readmissions is a testament to a system's commitment to continuous, patient-centered care. By investing in the integrated human and technological infrastructure to build a reliable bridge from hospital to home, we can improve outcomes, enhance dignity, and create a more resilient and equitable healthcare system for all.

References

1. Becker, C., Zumbrunn, S., Beck, K., Vincent, A., Loretz, N., Müller, J., ... & Hunziker, S. (2021). Interventions to improve communication at hospital discharge and rates of readmission: a systematic review and meta-analysis. *JAMA Network Open*, 4(8), e2119346-e2119346. doi:10.1001/jamanetworkopen.2021.19346
2. Berkowitz, S. A., Parashuram, S., Rowan, K., Andon, L., Bass, E. B., Bellantoni, M., ... & Brown, P. M. (2018). Association of a care coordination model with health care costs and utilization: the Johns Hopkins Community Health Partnership (J-CHIP). *JAMA network open*, 1(7), e184273-e184273. doi:10.1001/jamanetworkopen.2018.4273
3. Coffey, A., Leahy-Warren, P., Savage, E., Hegarty, J., Cornally, N., Day, M. R., ... & O'Caoimh, R. (2019). Interventions to promote early discharge and avoid inappropriate hospital (re) admission: a systematic review. *International journal of environmental research and public health*, 16(14), 2457. https://doi.org/10.3390/ijerph16142457
4. Curto, V., Einav, L., Finkelstein, A., Levin, J., & Bhattacharya, J. (2019). Health care spending and utilization in public and private Medicare. *American Economic Journal: Applied Economics*, 11(2), 302-332. DOI: 10.1257/app.20170295
5. Desai, A. S., & Stevenson, L. W. (2012). Rehospitalization for heart failure: predict or prevent?. *Circulation*, 126(4), 501-506. https://doi.org/10.1161/CIRCULATIONAHA.112.125435
6. Diamond, J., & DeVore, A. D. (2022). New strategies to prevent rehospitalizations for heart failure. *Current treatment options in cardiovascular medicine*, 24(12), 199-212. https://doi.org/10.1007/s11936-022-00969-y
7. Hansen, L. O., Young, R. S., Hinami, K., Leung, A., & Williams, M. V. (2011). Interventions to reduce 30-day rehospitalization: a systematic review. *Annals of internal medicine*, 155(8), 520-528. https://doi.org/10.7326/0003-4819-155-8-201110180-00008
8. Harrison, J. D., Auerbach, A. D., Quinn, K., Kynoch, E., & Mourad, M. (2014). Assessing the impact of nurse post-discharge telephone calls on 30-day hospital readmission rates. *Journal of general internal medicine*, 29(11), 1519-1525. https://doi.org/10.1007/s11606-014-2954-2
9. Hasan, O., Meltzer, D. O., Shaykevich, S. A., Bell, C. M., Kaboli, P. J., Auerbach, A.

D., ... & Schnipper, J. L. (2010). Hospital readmission in general medicine patients: a prediction model. *Journal of general internal medicine*, 25(3), 211-219. <https://doi.org/10.1007/s11606-009-1196-1>

10. Hirschman, K. B., Shaid, E., McCauley, K., Pauly, M. V., & Naylor, M. D. (2015). Continuity of care: the transitional care model. *Online J Issues Nurs*, 20(3), 1. DOI:10.3912/OJIN.Vol20No03Man01

11. John, M. E., Mgbekem, M. A., Nsemo, A. D., & Maxwell, G. I. (2016). Missed nursing care, patient outcomes and care outcomes in selected hospitals in Southern Nigeria. *nursing*, 152, 81-7.

12. Kalisch, B. J., Xie, B., & Dabney, B. W. (2014). Patient-reported missed nursing care correlated with adverse events. *American Journal of Medical Quality*, 29(5), 415-422. <https://doi.org/10.1177/1062860613501715>

13. Koehler, F., Koehler, K., Deckwart, O., Prescher, S., Wegscheider, K., Kirwan, B. A., ... & Stangl, K. (2018). Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. *The Lancet*, 392(10152), 1047-1057. [https://doi.org/10.1016/S0140-6736\(18\)31880-4](https://doi.org/10.1016/S0140-6736(18)31880-4)

14. Kripalani, S., Theobald, C. N., Anctil, B., & Vasilevskis, E. E. (2014). Reducing hospital readmission rates: current strategies and future directions. *Annual review of medicine*, 65(1), 471-485. <https://doi.org/10.1146/annurev-med-022613-090415>

15. LaBedz, S. L., Prieto-Centurion, V., Mutso, A., Basu, S., Bracken, N. E., Calhoun, E. A., ... & Krishnan, J. A. (2022). Pragmatic clinical trial to improve patient experience among adults during transitions from hospital to home: the PArTNER study. *Journal of general internal medicine*, 37(16), 4103-4111. <https://doi.org/10.1007/s11606-022-07461-0>

16. Lee, K. K., Yang, J., Hernandez, A. F., Steimle, A. E., & Go, A. S. (2016). Post-discharge follow-up characteristics associated with 30-day readmission after heart failure hospitalization. *Medical care*, 54(4), 365-372. DOI: 10.1097/MLR.0000000000000492

17. Leppin, A. L., Gionfriddo, M. R., Kessler, M., Brito, J. P., Mair, F. S., Gallacher, K., ... & Montori, V. M. (2014). Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. *JAMA internal medicine*, 174(7), 1095-1107. doi:10.1001/jamainternmed.2014.1608

18. Levine, D. M., Ouchi, K., Blanchfield, B., Saenz, A., Burke, K., Paz, M., ... & Schnipper, J. L. (2020). Hospital-level care at home for acutely ill adults: a randomized controlled trial. *Annals of internal medicine*, 172(2), 77-85. <https://doi.org/10.7326/M19-0600>

19. Long, H., Xie, D., Li, X., Jiang, Q., Zhou, Z., Wang, H., ... & Lei, G. (2022). Incidence, patterns and risk factors for readmission following knee arthroplasty in China: a national retrospective cohort study. *International Journal of Surgery*, 104, 106759. <https://doi.org/10.1016/j.ijsu.2022.106759>

20. Machado, S. J. (2019). *Reducing 30-Day Readmission Rates in Chronic Obstructive Pulmonary Disease Patients* (Doctoral dissertation, Walden University).

21. Mashhadi, S. F., Hisam, A., Sikander, S., Rathore, M. A., Rifaq, F., Khan, S. A., & Hafeez, A. (2021). Post discharge mHealth and teach-back communication effectiveness on hospital readmissions: a systematic review. *International journal of environmental research and public health*, 18(19), 10442. <https://doi.org/10.3390/ijerph181910442>

22. Mitchell, S. E., Martin, J., Holmes, S., van Deusen Lukas, C., Cancino, R., Paasche-Orlow, M., ... & Jack, B. (2016). How hospitals reengineer their discharge processes to reduce readmissions. *The Journal for Healthcare Quality (JHQ)*, 38(2), 116-126. DOI: 10.1097/JHQ.0000000000000005

23. Naylor, M. D., Shaid, E. C., Carpenter, D., Gass, B., Levine, C., Li, J., ... & Williams, M. V. (2017). Components of comprehensive and effective transitional care. *Journal of the American Geriatrics Society*, 65(6), 1119-1125. <https://doi.org/10.1111/jgs.14782>

24. Noah, B., Keller, M. S., Mosadeghi, S., Stein, L., Johl, S., Delshad, S., ... & Spiegel, B. M. (2018). Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. *NPJ digital medicine*, 1(1), 20172. <https://doi.org/10.1038/s41746-017-0002-4>

25. O'Brien, B. C., Harris, I. B., Beckman, T. J., Reed, D. A., & Cook, D. A. (2014). Standards for reporting qualitative research: a synthesis of recommendations. *Academic medicine*, 89(9), 1245-1251. DOI: 10.1097/ACM.0000000000000388

26. Qiu, L., Kumar, S., Sen, A., & Sinha, A. P. (2022). Impact of the Hospital Readmission Reduction Program on hospital readmission and mortality: An economic

analysis. *Production and Operations Management*, 31(5), 2341-2360. <https://doi.org/10.1111/poms.13724>

27. Shams, I., Ajorlou, S., & Yang, K. (2015). A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. *Health care management science*, 18(1), 19-34. <https://doi.org/10.1007/s10729-014-9278-y>

28. Van Walraven, C., Dhalla, I. A., Bell, C., Etchells, E., Stiell, I. G., Zarnke, K., ... & Forster, A. J. (2010). Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. *Cmaj*, 182(6), 551-557. <https://doi.org/10.1503/cmaj.091117>

29. Winkler, S., Koehler, K., Prescher, S., Koehler, M., Kirwan, B. A., Tajsic, M., & Koehler, F. (2021). Is 24/7 remote patient management in heart failure necessary? Results of the telemedical emergency service used in the TIM-HF and in the TIM-HF2 trials. *ESC Heart Failure*, 8(5), 3613-3620. <https://doi.org/10.1002/ehf2.13413>

30. Yeung, K., Dorsey, C. N., & Mettert, K. (2021). Effect of new Medicare enrollment on health, healthcare utilization, and cost: a scoping review. *Journal of the American Geriatrics Society*, 69(8), 2335-2343. <https://doi.org/10.1111/jgs.17113>

31. Zejnilović, L., Oliveira, P., & Canhão, H. (2016). Innovations by and for patients, and their place in the future health care system. In *Boundaryless Hospital: Rethink and Redefine Health Care Management* (pp. 341-357). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49012-9_19

Zuckerman, R. B., Sheingold, S. H., Orav, E. J., Ruhter, J., & Epstein, A. M. (2016). Readmissions, observation, and the hospital readmissions reduction program. *New England Journal of Medicine*, 374(16), 1543-1551. DOI: 10.1056/NEJMsa1513024