

Nursing Care and Clinical Management of Birth Asphyxia-An Updated Review

Abdullah Hadi Al Kathere⁽¹⁾, Amal Ali Ahmed Hakami⁽²⁾, Reda Mohammed Ashwi⁽²⁾, Rayed Mubarak Saad Alotaibi⁽³⁾, Majed Nafe Mogaees Almutairi⁽⁴⁾, Khulud Saud Alowayni⁽⁵⁾, Mohammed Raja Dughaybish Alsharari⁽⁶⁾, Wedad Eid Rashed Alkhaldi⁽⁷⁾, Rasheed Mohammed Talaq Alotaibi⁽⁸⁾, Salma Hasan Bahari⁽⁹⁾, Ameera Mabrook Allugmaine⁽¹⁰⁾, Sami Mohammed Alhazemi⁽¹¹⁾, Mawada Mohammed Alshammari⁽¹²⁾, Naifah Enad Quaid Al-Enezi⁽¹³⁾

(1) King Abdulaziz Hospital – Al Mahjar, Ministry of Health, Saudi Arabia,

(2) Al-Ashwa Primary Care Center, Ministry of Health, Saudi Arabia,

(3) Alfawaz PHCC – Riyadh, Ministry of Health, Saudi Arabia,

(4) Public Health Department – Riyadh, Ministry of Health, Saudi Arabia,

(5) Al Quwayiyah Hospital, Ministry of Health, Saudi Arabia,

(6) Miqoua General Hospital, Ministry of Health, Saudi Arabia,

(7) Bin Sinai Primary Health Care Center – Medical Fitness Department, Ministry of Health, Saudi Arabia,

(8) Ministry Of Health, Saudi Arabia,

(9) Primary Health Care Center – East Laban, Ministry of Health, Saudi Arabia,

(10) Al Salam Hospital, Ministry of Health, Saudi Arabia,

(11) Nairiyah General Hospital, Nairiyah City, Ministry of Health, Saudi Arabia,

(12) Imam Abdulrahman Al Faisal Hospital – Riyadh, Ministry of Health, Saudi Arabia,

(13) Al-Rawdah 1 Family Medicine and Specialized Clinics Health Center, Ministry of Health, Saudi Arabia

Abstract

Background: Perinatal asphyxia remains a major contributor to neonatal mortality and long-term neurodevelopmental disability worldwide. It results from impaired oxygen delivery and blood flow during the peripartum period, leading to multisystem organ injury, particularly the brain. Hypoxic ischemic encephalopathy (HIE) represents the most severe neurological consequence and poses significant challenges for neonatal care teams.

Aim: This review aimed to provide an updated overview of the etiology, pathophysiology, clinical presentation, evaluation, and nursing-focused management strategies for perinatal asphyxia and hypoxic ischemic encephalopathy, with emphasis on evidence-based interventions that improve neonatal outcomes.

Methods: A narrative literature review approach was used, synthesizing current evidence from clinical guidelines, epidemiological data, and peer-reviewed studies addressing perinatal asphyxia and HIE. Key areas reviewed included epidemiology, mechanisms of brain injury, clinical staging, diagnostic evaluation, therapeutic hypothermia, supportive management, and multidisciplinary care roles.

Results: Perinatal asphyxia arises from complex maternal, placental, uterine, and fetal factors and is most commonly intrapartum. Neurological injury follows a biphasic pattern involving primary energy failure and delayed secondary neuronal damage. Therapeutic hypothermia initiated within six hours of birth significantly reduces mortality and long-term disability in eligible term and near-term infants with moderate to severe HIE. Supportive management, including respiratory, cardiovascular, metabolic, and neurological care, remains essential for all affected neonates. Early recognition, accurate staging, and continuous monitoring are critical to optimizing outcomes.

Conclusion: Perinatal asphyxia requires prompt diagnosis, structured neurological assessment, and comprehensive supportive care. Therapeutic hypothermia represents a cornerstone intervention for eligible infants, while skilled nursing and interdisciplinary collaboration are fundamental to improving survival and neurodevelopmental outcomes.

Key Words: Perinatal asphyxia, hypoxic ischemic encephalopathy, neonatal nursing care, therapeutic hypothermia, neonatal resuscitation

Introduction

Perinatal asphyxia refers to a disruption in blood flow or gas exchange affecting the fetus or newborn during the period immediately before birth, throughout labor, or shortly after delivery. This disturbance interferes with oxygen delivery and

carbon dioxide removal and results in impaired perfusion of essential organs. The brain, heart, kidneys, liver, and skeletal muscles are particularly vulnerable to hypoxic injury during this period. When placental gas exchange before birth or pulmonary gas exchange after birth fails, the

newborn develops hypoxia or complete anoxia. This process leads to progressive hypoxemia and hypercapnia, which place significant stress on cellular metabolism. In severe cases, aerobic metabolism becomes unsustainable and cells shift to anaerobic pathways, resulting in lactic acid accumulation and metabolic acidosis. These biochemical changes contribute directly to tissue injury and organ dysfunction [1][2]. Hypoxic ischemic encephalopathy represents the neurologic manifestation of perinatal asphyxia and ischemia. It reflects injury to the central nervous system caused by reduced cerebral blood flow and oxygen delivery. The severity of neurologic damage depends on the duration of the hypoxic insult, the degree of ischemia, and the effectiveness of neonatal resuscitation and postnatal care. Neuronal injury occurs through a cascade of events that includes energy failure, excitotoxicity, oxidative stress, and inflammation. These mechanisms can lead to both immediate and delayed neuronal death, explaining why neurologic deterioration may evolve over hours or days following birth. Clinically, a hypoxic event in the neonatal period often presents with measurable metabolic derangements and characteristic physiologic findings. Newborns may demonstrate metabolic acidosis with an increased base deficit, reflecting prolonged anaerobic metabolism. Depressed Apgar scores at one and five minutes commonly indicate impaired cardiopulmonary and neurologic adaptation. Multisystem involvement is frequent and may include dysfunction of the respiratory, cardiovascular, renal, and hepatic systems. Neurologic manifestations are central to diagnosis and may include altered tone, abnormal eye or pupil responses, weak or absent suck reflex, irregular breathing patterns such as apnea or hyperpnea, and the presence of clinical seizures. These findings must be carefully evaluated to exclude alternative causes, including inherited metabolic disorders, genetic syndromes, congenital neurologic anomalies, or medication effects. Neuroimaging, particularly magnetic resonance imaging, often reveals characteristic patterns of injury that support the diagnosis and assist in prognostication [1][2].

Etiology

Perinatal asphyxia arises from any pathological process that compromises oxygen delivery or blood flow to the fetus or the newborn during the critical peripartum period. These insults may originate from maternal, placental, uterine, or fetal factors and often interact in complex ways. Maternal conditions that impair systemic oxygenation or circulation represent a significant etiologic category. Disorders such as severe maternal sepsis, hypovolemic or cardiogenic shock, and amniotic fluid embolism can abruptly reduce uteroplacental perfusion, leading to acute fetal hypoxia. Similarly, maternal respiratory compromise or profound hypotension can limit oxygen transfer across the

placenta, placing the fetus at risk of ischemic injury. Uterine and placental abnormalities also play a central role in the development of perinatal asphyxia. Uterine rupture, although uncommon, constitutes an obstetric emergency that can result in sudden interruption of fetal blood supply. Placental pathologies such as placental abruption interfere directly with gas and nutrient exchange by prematurely separating the placenta from the uterine wall. Umbilical cord complications, including true knots, cord prolapse, or cord compression, may restrict fetal blood flow and oxygen delivery, particularly during labor when uterine contractions exacerbate these mechanical effects. Intrauterine or perinatal infections further contribute by inducing inflammatory responses that impair placental function and fetal oxygenation. The timing of the hypoxic insult is variable. In many cases, asphyxia develops during labor and delivery, when mechanical and hemodynamic stresses peak. However, perinatal asphyxia may also occur before the onset of labor due to chronic placental insufficiency or acute antepartum events, or immediately after birth in neonates who fail to establish effective respiration and require extensive resuscitation [3][4][5]. Epidemiologic observations indicate that the majority of cases occur intrapartum, while approximately one fifth develop antepartum, with a smaller proportion arising in the early postnatal period. Determining the precise etiology requires a detailed obstetric, intrapartum, and neonatal history, including maternal health, fetal monitoring data, and delivery events. Despite thorough evaluation, a clearly identifiable sentinel event is documented in only a minority of neonates diagnosed with hypoxic ischemic encephalopathy, highlighting the multifactorial and often elusive nature of perinatal asphyxia [6].

Epidemiology

The epidemiology of perinatal asphyxia demonstrates substantial variation across regions, reflecting disparities in access to quality obstetric and neonatal care. In high resource countries, the incidence of perinatal asphyxia among term infants is estimated at approximately 2 cases per 1000 live births. This relatively low rate is attributed to advances in prenatal surveillance, intrapartum fetal monitoring, skilled obstetric management, and immediate neonatal resuscitation. In contrast, the burden of perinatal asphyxia is markedly higher in low resource settings, where the incidence may be tenfold greater due to limited access to skilled birth attendants, inadequate intrapartum monitoring, and delayed or insufficient neonatal care [7]. The clinical consequences of perinatal asphyxia are significant and contribute substantially to neonatal mortality and long term morbidity worldwide. Among affected term infants, mortality rates during the neonatal period range from 15% to 20%. Survivors remain at considerable risk for adverse neurodevelopmental outcomes, with up to one quarter developing

permanent neurologic impairments such as cerebral palsy, epilepsy, cognitive delay, or sensory deficits [8]. These outcomes place a sustained burden on families, healthcare systems, and social support structures. In preterm infants, the epidemiology of perinatal asphyxia is more complex and less clearly defined. Prematurity itself is associated with immature organ systems and increased vulnerability to hypoxic and ischemic injury. In this population, distinguishing perinatal asphyxia from other causes of neurologic injury, such as intraventricular hemorrhage or infection, is often challenging. The incidence of asphyxia-related injury in preterm neonates is particularly high in regions with limited resources, where preterm birth rates are elevated and neonatal intensive care capabilities are constrained [9][10][11]. Globally, perinatal asphyxia remains a major contributor to neonatal mortality and childhood disability, especially in low and middle income countries. Its epidemiologic patterns underscore the critical importance of improving maternal health, strengthening intrapartum care, and expanding access to effective neonatal resuscitation and postnatal support. Reducing the incidence and impact of perinatal asphyxia requires coordinated public health strategies, health system investment, and continued research aimed at early identification and prevention of hypoxic injury across diverse populations [9][10][11].

Pathophysiology

The neuropathological processes underlying hypoxic ischemic encephalopathy represent a complex and evolving cascade of cellular and molecular events that unfold over time following an episode of impaired cerebral oxygenation and perfusion. Brain injury in this context does not occur as a single event but rather progresses through distinct yet interrelated stages that collectively determine the extent and severity of neurological damage. The initial phase is characterized by primary neuronal injury that arises immediately after the interruption of oxygen and glucose delivery to cerebral tissue. Neurons are highly dependent on continuous aerobic metabolism, and even brief disruptions in substrate availability can result in rapid cellular dysfunction. During this primary phase, cerebral autoregulatory mechanisms may partially compensate for reduced oxygen delivery by redistributing blood flow toward structures essential for survival, including the brainstem and cerebellum. As a consequence, regions located at the borders between major cerebral arterial territories, commonly referred to as watershed areas, become particularly vulnerable to ischemic injury in cases of prolonged or partial hypoxia. In contrast, when the hypoxic ischemic insult is acute and severe, metabolically active deep gray matter structures such as the basal ganglia and thalamus are more frequently affected [6]. The specific pattern of injury therefore reflects both the intensity and duration of the hypoxic event. At

the cellular level, the abrupt reduction in oxygen availability leads to depletion of adenosine triphosphate, the primary energy source required for neuronal homeostasis. Loss of ATP results in failure of energy dependent ion transport mechanisms, most notably the sodium potassium adenosine triphosphatase pump. As ionic gradients collapse, sodium ions accumulate intracellularly, followed by osmotic water influx, leading to cytotoxic edema and widespread neuronal depolarization. This depolarization triggers uncontrolled neurotransmitter release and disrupts membrane integrity, ultimately resulting in neuronal necrosis and apoptosis.

One of the most critical mediators of secondary injury during this stage is glutamate, a major excitatory neurotransmitter released in excessive amounts from injured neurons. Elevated extracellular glutamate overstimulates N methyl D aspartate receptors, causing a sustained influx of calcium ions into the cell. Increased intracellular calcium activates destructive enzymatic pathways, including proteases, lipases, and endonucleases, which further degrade cellular structures and amplify neuronal death [6]. Following the initial insult, a transient latent phase typically lasting several hours ensues, during which partial reperfusion of cerebral tissue occurs. During this period, some neurons may recover metabolic function, creating a window of therapeutic opportunity. However, inflammatory cascades are simultaneously initiated, involving microglial activation, cytokine release, and oxidative stress. These processes contribute to delayed secondary neuronal injury that evolves over the subsequent 24 to 48 hours. Reperfusion of damaged tissue facilitates the dissemination of excitotoxic neurotransmitters, reactive oxygen species, and inflammatory mediators to surrounding regions, thereby expanding the area of cerebral injury beyond the original ischemic core. The progression from primary energy failure to delayed secondary injury explains the evolving clinical and radiologic manifestations of hypoxic ischemic encephalopathy and underscores the importance of early recognition and timely neuroprotective interventions aimed at interrupting these pathological cascades [6].

History and Physical

Perinatal asphyxia produces a wide spectrum of systemic and neurological manifestations that evolve according to the timing, duration, and severity of the hypoxic ischemic insult. A comprehensive history and meticulous physical examination are essential for early recognition of hypoxic ischemic encephalopathy and for estimating prognosis. Historical assessment focuses on antenatal, intrapartum, and immediate postnatal events that may have compromised fetal oxygenation or perfusion. These include evidence of fetal distress, abnormal labor progression, need for extensive resuscitation at birth, low Apgar scores, metabolic acidosis, or delayed onset of spontaneous respiration.

Such findings provide important contextual information that guides clinical interpretation of subsequent neurological signs. Systemic involvement is common because hypoxia ischemia affects multiple organ systems simultaneously. Respiratory compromise may manifest as respiratory distress, apnea, or persistent pulmonary hypertension due to impaired pulmonary vascular adaptation. Cardiovascular effects include myocardial dysfunction, hypotension, and reduced cardiac output. Hepatic injury may present with elevated transaminases and impaired coagulation, while renal involvement is suggested by oliguria or rising serum creatinine. These systemic features often parallel the severity of neurological injury and contribute to overall clinical instability. Neurological examination remains central to the diagnosis of hypoxic ischemic encephalopathy. The Sarnat staging system provides a structured clinical framework for classifying the degree of encephalopathy based on level of consciousness, neuromuscular control, reflexes, autonomic function, and seizure activity. In Sarnat stage I, which represents mild encephalopathy, neonates typically demonstrate increased sympathetic activity. They may appear hyperalert, irritable, and restless, with prolonged wakefulness, dilated pupils, tachycardia, and brisk deep tendon reflexes. Muscle tone is usually normal or slightly increased, and seizures are absent [12].

Sarnat stage II reflects moderate encephalopathy and is characterized by impaired consciousness. Affected neonates are often lethargic or obtunded, with diminished spontaneous activity and hypotonia, although distal flexion may remain preserved. Autonomic dysfunction shifts toward parasympathetic predominance, leading to miosis, bradycardia, and increased oral or tracheal secretions. Seizures are a hallmark feature of this stage and commonly occur within the first 24 hours of life, often requiring electroencephalographic confirmation and anticonvulsant therapy. Sarnat stage III represents severe encephalopathy and is associated with profound neurological depression. Infants exhibit markedly reduced or absent responsiveness, flaccid muscle tone, weak or absent primitive reflexes, and depressed deep tendon reflexes. Autonomic instability may be pronounced, and respiratory drive is often insufficient, necessitating mechanical ventilation. Although electroencephalographic abnormalities are severe in this stage, overt clinical seizures are less frequent because extensive cortical and subcortical injury impairs the generation and propagation of organized seizure activity. The applicability of Sarnat staging is limited in extremely preterm neonates due to immaturity of the nervous system. Preterm infants may display fewer overt seizure manifestations and instead show injury patterns dominated by white matter damage and intraventricular hemorrhage [12]. These differences underscore the need for gestational

age specific interpretation of neurological findings and adjunctive use of neuroimaging and EEG to accurately assess injury severity.

Evaluation

The evaluation of neonates with suspected perinatal asphyxia and hypoxic ischemic encephalopathy requires a systematic and multidisciplinary approach aimed at defining the severity of the insult, identifying organ system involvement, and guiding immediate and long term management. Initial laboratory assessment plays a critical role in establishing the physiological consequences of hypoxia and ischemia. Arterial blood gas analysis is a fundamental early investigation, as it allows differentiation between respiratory and metabolic acidosis and provides an objective measure of hypoxemia and hypercapnia. The degree of metabolic acidosis, reflected by low pH and elevated base deficit, correlates with the severity of tissue hypoxia and is often used as an indirect marker of the magnitude of the hypoxic event. Because perinatal asphyxia commonly results in multisystem injury, targeted laboratory studies are essential to assess end organ dysfunction. Measurement of serum transaminases and coagulation parameters helps evaluate hepatic injury, which may manifest as elevated liver enzymes and impaired synthetic function. Cardiac involvement can be assessed through biomarkers such as troponin and creatine kinase MB isoenzyme, which provide evidence of myocardial ischemia and dysfunction. Renal perfusion is particularly vulnerable to hypoxic injury, making serum creatinine and blood urea nitrogen important indicators of acute kidney impairment. In addition, neonates exposed to significant physiological stress rapidly consume glycogen reserves, placing them at high risk for hypoglycemia. Frequent blood glucose monitoring during resuscitation and the early postnatal period is therefore essential to prevent secondary neurological injury related to low serum glucose levels [13][14][15]. Neurological evaluation must be continuous, as clinical manifestations of encephalopathy and seizures may evolve over time. Careful bedside observation for changes in level of consciousness, tone, reflexes, and autonomic stability is required. When seizures are suspected clinically or subclinical seizure activity is a concern, electroencephalography or continuous video EEG monitoring should be performed to confirm diagnosis and guide anticonvulsant therapy. Neuroimaging provides critical structural and prognostic information. Magnetic resonance imaging is typically obtained between 5 and 10 days after the hypoxic ischemic event, once the neonate is clinically stable. MRI allows detailed visualization of injury patterns, which vary according to the timing and severity of the insult, and even infants with clinically mild hypoxic ischemic encephalopathy often demonstrate radiologic evidence of brain injury [16]. Together,

these evaluation strategies provide a comprehensive assessment that supports accurate diagnosis, risk stratification, and informed clinical decision making.

Treatment and Management

The management of perinatal asphyxia and hypoxic ischemic encephalopathy is centered on limiting secondary brain injury, supporting failing organ systems, and maintaining physiologic stability during a critical window of vulnerability. At present, no specific disease modifying therapy exists for preterm infants or for term infants with mild hypoxic ischemic injury. Management in these groups is primarily supportive, with careful attention to temperature control, cardiorespiratory stability, metabolic balance, and neurological monitoring. In contrast, therapeutic hypothermia has emerged as the standard of care for term and near term infants with moderate to severe hypoxic ischemic encephalopathy who are greater than 35 weeks of gestation [17]. The rationale for therapeutic hypothermia is based on the well described temporal evolution of hypoxic ischemic brain injury. Following the initial hypoxic ischemic insult, a phase of primary neuronal injury occurs due to interruption of oxygen and glucose delivery to cerebral tissue. This is followed by a latent phase lasting up to six hours, during which partial reperfusion occurs and some neuronal recovery is possible. Subsequently, a secondary phase of injury develops as damaged cells undergo lysis and release excitotoxic neurotransmitters, inflammatory mediators, and free radicals that amplify neuronal death. Therapeutic hypothermia aims to intervene during the latent phase to attenuate these secondary injury cascades by reducing cerebral metabolism, limiting excitotoxicity, suppressing inflammation, and decreasing apoptotic pathways [18][19][20][21][22]. Early initiation within the therapeutic window is therefore critical to maximize neuroprotective benefit.

Therapeutic hypothermia is initiated only in infants who meet strict diagnostic and clinical criteria, including evidence of significant perinatal hypoxia and signs of moderate to severe encephalopathy. When indicated, cooling is typically achieved by reducing the core body temperature to approximately 33 to 34 degrees Celsius for a duration of 72 hours, followed by controlled rewarming. Throughout this process, continuous monitoring is required to detect complications such as arrhythmias, hypotension, electrolyte disturbances, and coagulopathy. Detailed guidance regarding eligibility and implementation protocols is outlined in established clinical resources [17]. For infants who do not qualify for therapeutic hypothermia, including preterm neonates and those with mild encephalopathy, normothermia should be actively maintained, as both hypothermia and hyperthermia can exacerbate neurological injury. Supportive management of associated systemic complications is a cornerstone of care in all infants with perinatal

asphyxia. Respiratory dysfunction is common and may manifest as respiratory distress syndrome or persistent pulmonary hypertension of the newborn. Management may require endotracheal intubation, mechanical ventilation, administration of surfactant, supplemental oxygen, and inhaled nitric oxide to reduce pulmonary vascular resistance and improve oxygenation. Oxygen therapy must be carefully titrated, as excessive oxygen exposure can increase oxidative stress and worsen tissue injury [24].

Cardiovascular instability is frequently encountered due to myocardial ischemia and depressed cardiac function. Hypotension may compromise cerebral perfusion, while hypertension may increase the risk of intracranial injury. Vasoactive medications may be required to support cardiac output and maintain adequate blood pressure. Continuous hemodynamic monitoring is essential to ensure stable and consistent cerebral oxygen delivery. Coagulopathy resulting from hepatic dysfunction or disseminated intravascular coagulation should be managed with judicious administration of blood products to maintain adequate oxygen carrying capacity and hemostasis, while avoiding volume overload. Renal impairment is another significant consequence of hypoxic ischemic injury. Oliguria or anuria may develop due to acute tubular necrosis, necessitating careful fluid management. Excessive administration of crystalloid solutions or blood products can worsen edema and compromise respiratory function. Strict monitoring of urine output, electrolytes, and renal function markers is therefore required to guide fluid therapy and prevent secondary complications. Metabolic management plays a central role in neuroprotection. Many infants with birth asphyxia develop metabolic acidosis and attempt to compensate by lowering carbon dioxide levels through hyperventilation. While this may partially correct acidosis, excessive reductions in carbon dioxide can lead to cerebral vasoconstriction and reduced cerebral blood flow, further impairing oxygen delivery to the brain [23]. Ventilatory strategies should therefore aim for balanced gas exchange rather than aggressive correction of blood gas abnormalities. Maintenance of euglycemia is equally important, as the neonatal brain relies heavily on glucose for energy. Both hypoglycemia and hyperglycemia have been associated with worse neurological outcomes, making frequent glucose monitoring and timely intervention essential [25].

Through both therapeutic hypothermia and supportive normothermic care, close neurological observation is required. Continuous or serial electroencephalographic monitoring may be necessary to detect seizures, many of which are subclinical in this population. Prompt identification and treatment of seizures reduces additional metabolic stress on the injured brain and may improve outcomes. Multidisciplinary collaboration among neonatologists, nurses, neurologists, and

respiratory therapists is critical to ensure coordinated and comprehensive care. In summary, treatment of perinatal asphyxia and hypoxic ischemic encephalopathy is focused on early neuroprotection, meticulous supportive care, and prevention of secondary injury. Therapeutic hypothermia represents a major advance for eligible infants with moderate to severe encephalopathy, while careful maintenance of physiological stability remains the foundation of management for all affected neonates [25].

Differential Diagnosis

When assessing a neonate for suspected birth asphyxia and hypoxic ischemic encephalopathy, you must consider alternative conditions that can produce similar neurological and systemic findings. Accurate differentiation is essential because management strategies, prognosis, and long term outcomes vary significantly across these disorders. A careful review of antenatal history, peripartum events, clinical course, laboratory data, and neuroimaging findings guides this process. Structural brain abnormalities, including congenital brain tumors and developmental defects, can present with hypotonia, seizures, altered consciousness, or abnormal reflexes shortly after birth. Unlike hypoxic ischemic injury, these conditions often lack a clear history of perinatal hypoxia or metabolic acidosis at delivery. Neuroimaging plays a decisive role, as tumors or malformations show focal or patterned abnormalities rather than the characteristic watershed or deep gray matter injury seen in hypoxic ischemic encephalopathy. You should suspect these conditions when neurological signs are disproportionate to the perinatal course. Inherited metabolic disorders represent another critical diagnostic consideration. Conditions such as methylmalonic acidemia and propionic acidemia may present in the early neonatal period with lethargy, poor feeding, vomiting, metabolic acidosis, and seizures. These features can closely resemble the presentation of birth asphyxia. However, metabolic disorders typically show progressive deterioration despite supportive resuscitation and are often associated with hyperammonemia, hypoglycemia, or specific organic acid abnormalities. Early metabolic screening and targeted laboratory testing are essential, as delayed diagnosis can lead to rapid neurological decline [26][27].

Neonatal sepsis must also be considered, particularly when systemic instability, respiratory distress, temperature dysregulation, and altered mental status are present. Sepsis can cause secondary hypoxic injury due to hypotension and impaired oxygen delivery, complicating the clinical picture. Unlike primary perinatal asphyxia, infectious causes may be associated with elevated inflammatory markers, positive blood cultures, and a clinical course that worsens over hours to days rather than stabilizing after resuscitation. Neuromuscular disorders, including neonatal myopathies, can mimic

hypoxic injury by presenting with hypotonia, weak cry, and poor respiratory effort. In these cases, consciousness and alertness are often relatively preserved, and neuroimaging does not demonstrate ischemic brain injury. A detailed family history and neuromuscular evaluation are key to distinguishing these conditions. You should approach differential diagnosis systematically, recognizing that hypoxic ischemic encephalopathy is a diagnosis of exclusion supported by clinical context. Careful evaluation prevents misdiagnosis, avoids inappropriate interventions, and ensures timely initiation of condition specific therapies [27][28][29].

Pertinent Studies and Ongoing Trials

Current evidence strongly supports therapeutic hypothermia as the standard of care for term and near term infants with moderate to severe hypoxic ischemic encephalopathy. However significant gaps remain regarding its role in other neonatal populations. You should note that preterm infants and those with mild encephalopathy represent a substantial proportion of affected neonates yet are excluded from most landmark trials. Ongoing clinical studies are therefore focused on determining whether the neuroprotective benefits of cooling can be safely extended to these groups. Several multicenter trials are evaluating therapeutic hypothermia in infants born between 33 and 35 weeks gestation. These studies aim to clarify safety concerns related to immature organ systems including increased risks of intracranial hemorrhage infection and hemodynamic instability. Early observational data suggest potential benefit but also highlight higher complication rates compared with term infants. As a result trial designs emphasize strict eligibility criteria close physiologic monitoring and modified cooling protocols. Parallel research is examining the use of therapeutic hypothermia in infants with mild hypoxic ischemic encephalopathy. Historically these infants were thought to have favorable outcomes without intervention. Recent longitudinal studies challenge this assumption by demonstrating subtle but measurable cognitive behavioral and motor deficits later in childhood. Ongoing randomized trials seek to determine whether early cooling can prevent secondary neuronal injury in this population without exposing infants to unnecessary risk. In addition to hypothermia adjunctive neuroprotective therapies are under investigation. These include erythropoietin, xenon gas, allopurinol and stem cell based interventions. Many trials focus on combination therapy with hypothermia to enhance neuroprotection during the latent and secondary injury phases. The outcomes of these studies have the potential to redefine treatment algorithms and expand therapeutic options for neonatal brain injury. You should expect that future guidelines will increasingly reflect this growing evidence base [28].

Staging

Clinical staging remains central to the diagnosis risk stratification and management of hypoxic ischemic encephalopathy. The modified Sarnat examination is the most widely used tool for this purpose and plays a critical role in determining eligibility for therapeutic hypothermia in infants over 35 weeks gestation. This structured neurologic assessment evaluates multiple domains including level of consciousness spontaneous activity muscle tone posture primitive reflexes autonomic function and the presence of seizures. To classify encephalopathy an infant must demonstrate abnormalities in at least three of these categories. This requirement reduces diagnostic ambiguity and helps distinguish true hypoxic ischemic injury from transient neonatal adaptation. When findings fall between stages the level of consciousness serves as the decisive factor because it correlates closely with injury severity and prognosis. You should recognize that early and accurate staging is time sensitive since eligibility for hypothermia depends on assessment within the first six hours of life. Despite its clinical utility the modified Sarnat examination has limitations. It was developed and validated primarily in term infants and does not reliably apply to significant preterm neonates whose neurologic responses differ due to developmental immaturity. In these infants hypotonia limited spontaneous movement and immature reflexes may reflect gestational age rather than brain injury. As a result, staging must be interpreted cautiously and in conjunction with perinatal history laboratory findings and neuroimaging. Nevertheless, the modified Sarnat examination remains the cornerstone of bedside neurologic assessment. It provides a shared clinical language that supports consistent decision making communication among care teams and enrollment in clinical trials. Continued refinement and validation in broader populations remain important research priorities [27][28].

Prognosis

Birth asphyxia carries a high risk of death and long term disability despite advances in neonatal care. Mortality rates exceed thirty percent with most deaths occurring in the early neonatal period due to severe neurologic injury or multi organ failure. Among survivors the spectrum of outcomes is broad ranging from normal development to profound lifelong impairment. You should understand that prognosis depends on injury severity timing of intervention and the presence of systemic complications. Infants with moderate to severe hypoxic ischemic encephalopathy are at greatest risk for adverse outcomes. Long term sequelae include cerebral palsy epilepsy intellectual disability visual impairment and hearing loss. Feeding difficulties and recurrent aspiration further increase morbidity and late mortality. Even infants who initially appear to recover may demonstrate learning difficulties or behavioral disorders later in childhood. Prognostic

assessment in preterm infants remains particularly challenging. Few studies provide reliable long term outcome data and injury patterns differ from those seen in term neonates. White matter injury and intraventricular hemorrhage are more common and may evolve over time. Neuroimaging particularly early MRI can help predict severe disability or death but has limited sensitivity for mild or moderate injury. As a result prognosis often requires ongoing developmental surveillance rather than early definitive prediction. Clinical examination remains essential. Serial neurologic assessments combined with neuroimaging electrophysiologic studies and developmental follow up provide the most accurate picture of long term outcome. Approaching prognostication with caution and communicate uncertainty clearly to families [26][27][28][29][30][31].

Complications

Birth asphyxia affects nearly every organ system due to global hypoxia and ischemia. The brain is most vulnerable and hypoxic ischemic encephalopathy represents the most devastating complication. Neurologic consequences include seizures abnormal tone feeding impairment and long term neurodevelopmental disability. Severe cases may progress to brain death. Systemic complications are common and significantly influence survival. Renal injury may present as oliguria electrolyte imbalance or acute kidney failure. Hepatic dysfunction manifests through elevated transaminases coagulopathy and impaired glucose regulation. Myocardial ischemia can lead to hypotension arrhythmias and reduced cardiac output requiring pharmacologic support. Respiratory complications include persistent pulmonary hypertension of the newborn impaired gas exchange and prolonged ventilator dependence. Metabolic derangements such as lactic acidosis hypoglycemia and electrolyte abnormalities further complicate management. These systemic effects interact and may worsen cerebral injury by reducing oxygen delivery and perfusion. Recognizing that complications often evolve over time rather than presenting immediately. Continuous monitoring and proactive management are essential. Early identification of organ dysfunction allows timely intervention and may improve overall outcomes. Long term complications require coordinated follow up and rehabilitation planning [30][31].

Consultations

Management of birth asphyxia requires coordinated input from multiple specialties. The neonatologist leads acute resuscitation initiates therapeutic hypothermia when indicated and oversees ongoing intensive care. Pediatric neurologists play a key role in evaluating encephalopathy seizure management EEG interpretation and long term neurologic follow up. Cardiology consultation may be required for myocardial dysfunction pulmonary

hypertension or hemodynamic instability. Nephrologists assist in managing renal failure fluid balance and electrolyte disturbances. Pulmonologists contribute to the management of respiratory failure and advanced ventilatory strategies. In cases of severe multi organ dysfunction pediatric intensivists may provide additional expertise. As infants transition to recovery outpatient consultations become essential. Developmental pediatricians assess growth cognition and motor function. Physical occupational and speech therapists initiate early intervention programs to optimize neurodevelopment. In cases with poor prognosis palliative care specialists support symptom management ethical decision making and family counseling. Consultation viewed as a dynamic process that evolves with the infant's condition. Timely involvement of appropriate specialists improves care coordination reduces complications and supports families throughout hospitalization and beyond [31].

Enhancing Healthcare Team Outcomes

Optimal management of birth asphyxia depends on an integrated interprofessional team approach. Early recognition rapid intervention and precise execution of evidence based protocols are critical within the first hours of life. Neonatologists coordinate care and guide decision making while nurses provide continuous monitoring administer therapies and detect early signs of deterioration. Advanced practice providers contribute to stabilization protocol adherence and communication across disciplines. Pharmacists ensure safe and accurate medication use particularly during resuscitation seizure control and hemodynamic support. Respiratory therapists manage ventilation oxygenation and pulmonary hypertension therapies. Effective teamwork requires shared situational awareness and structured communication. Regular interdisciplinary rounds allow alignment of goals review of evolving clinical data and anticipation of complications. Clear documentation and handoff communication reduce errors and promote continuity of care. Ethical considerations are integral to team performance. Providers must balance aggressive intervention with realistic assessment of prognosis while respecting family values and preferences. Transparent compassionate communication supports shared decision making and trust. Recognizing that outcomes improve when teams train together follow standardized protocols and engage in continuous quality improvement. Simulation based training neonatal resuscitation drills and therapeutic hypothermia competency programs enhance preparedness. Through collaboration and mutual accountability the healthcare team can improve survival reduce disability and deliver care that prioritizes both infant wellbeing and family centered support [31].

Conclusion:

Perinatal asphyxia continues to pose a significant global health burden, particularly in settings with limited access to skilled obstetric and neonatal care. Its multifactorial etiology and evolving pathophysiology necessitate vigilant assessment and timely intervention during the critical early hours of life. Hypoxic ischemic encephalopathy represents the most severe manifestation, with outcomes closely linked to the severity of injury and the effectiveness of early management. Therapeutic hypothermia has transformed the care of term and near-term infants with moderate to severe encephalopathy, significantly reducing mortality and long-term neurodevelopmental impairment. Nevertheless, meticulous supportive management remains the foundation of care for all affected neonates. Nurses play a pivotal role in early recognition, monitoring, and implementation of evidence-based interventions. Strengthening multidisciplinary teamwork, adherence to standardized protocols, and ongoing research into adjunctive neuroprotective therapies are essential to further improve neonatal outcomes and reduce the long-term consequences of birth asphyxia.

References:

1. Sugiura-Ogasawara M, Ebara T, Yamada Y, Shoji N, Matsuki T, Kano H, Kurihara T, Omori T, Tomizawa M, Miyata M, Kamijima M, Saitoh S., Japan Environment, Children's Study (JECS) Group. Adverse pregnancy and perinatal outcome in patients with recurrent pregnancy loss: Multiple imputation analyses with propensity score adjustment applied to a large-scale birth cohort of the Japan Environment and Children's Study. *Am J Reprod Immunol.* 2019 Jan;81(1):e13072.
2. Hakobyan M, Dijkman KP, Laroche S, Naulaers G, Rijken M, Steiner K, van Straaten HLM, Swarte RMC, Ter Horst HJ, Zecic A, Zonnenberg IA, Groenendaal F. Outcome of Infants with Therapeutic Hypothermia after Perinatal Asphyxia and Early-Onset Sepsis. *Neonatology.* 2019;115(2):127-133.
3. Viaroli F, Cheung PY, O'Reilly M, Polglase GR, Pichler G, Schmölzer GM. Reducing Brain Injury of Preterm Infants in the Delivery Room. *Front Pediatr.* 2018;6:290.
4. Enweronu-Laryea CC, Andoh HD, Frimpong-Barfi A, Asenso-Boadi FM. Parental costs for in-patient neonatal services for perinatal asphyxia and low birth weight in Ghana. *PLoS One.* 2018;13(10):e0204410.
5. Kapaya H, Williams R, Elton G, Anumba D. Can Obstetric Risk Factors Predict Fetal Acidemia at Birth? A Retrospective Case-Control Study. *J Pregnancy.* 2018;2018:2195965.

6. Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. *JAMA Pediatr.* 2015 Apr;169(4):397-403.

7. Victor S, Rocha-Ferreira E, Rahim A, Hagberg H, Edwards D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. *Eur J Pediatr.* 2022 Mar;181(3):875-887.

8. Odd D, Heep A, Luyt K, Draycott T. Hypoxic-ischemic brain injury: Planned delivery before intrapartum events. *J Neonatal Perinatal Med.* 2017;10(4):347-353.

9. Gopagondanahalli KR, Li J, Fahey MC, Hunt RW, Jenkin G, Miller SL, Malhotra A. Preterm Hypoxic-Ischemic Encephalopathy. *Front Pediatr.* 2016;4:114.

10. Tadesse AW, Muluneh MD, Aychiluhm SB, Mare KU, Wagaw GB. Determinants of birth asphyxia among preterm newborns in Ethiopia: a systematic review and meta-analysis of observational studies protocol. *Syst Rev.* 2022 Feb 19;11(1):30.

11. Goldenberg RL, Dhaded S, Saleem S, Goudar SS, Tikmani SS, Trotta M, Hwang Jackson K, Guruprasad G, Kulkarni V, Kumar S, Uddin Z, Reza S, Raza J, Yasmin H, Yogeshkumar S, Somannavar MS, Aceituno A, Parlberg L, Silver RM, McClure EM., PURPOSe Study Group. Birth asphyxia is under-rated as a cause of preterm neonatal mortality in low- and middle-income countries: A prospective, observational study from PURPOSe. *BJOG.* 2022 Nov;129(12):1993-2000.

12. Garfinkle J, Wintermark P, Shevell MI, Oskoui M. Children born at 32 to 35 weeks with birth asphyxia and later cerebral palsy are different from those born after 35 weeks. *J Perinatol.* 2017 Aug;37(8):963-968.

13. Imai K, de Vries LS, Alderliesten T, Wagenaar N, van der Aa NE, Lequin MH, Benders MJNL, van Haastert IC, Groenendaal F. MRI Changes in the Thalamus and Basal Ganglia of Full-Term Neonates with Perinatal Asphyxia. *Neonatology.* 2018;114(3):253-260.

14. Salas J, Tekes A, Hwang M, Northington FJ, Huismans TAGM. Head Ultrasound in Neonatal Hypoxic-Ischemic Injury and Its Mimickers for Clinicians: A Review of the Patterns of Injury and the Evolution of Findings Over Time. *Neonatology.* 2018;114(3):185-197.

15. Alsaleem M, Zeinali LI, Mathew B, Kumar VHS. Glucose Levels during the First 24 Hours following Perinatal Hypoxia. *Am J Perinatol.* 2021 Apr;38(5):490-496.

16. Li Y, Wisnowski JL, Chalak L, Mathur AM, McKinstry RC, Licona G, Mayock DE, Chang T, Van Meurs KP, Wu TW, Ahmad KA, Cornet MC, Rao R, Scheffler A, Wu YW. Mild hypoxic-ischemic encephalopathy (HIE): timing and pattern of MRI brain injury. *Pediatr Res.* 2022 Dec;92(6):1731-1736.

17. Sakr M, Shah M, Balasundaram P. *StatPearls* [Internet]. StatPearls Publishing; Treasure Island (FL): Feb 25, 2024. *Neonatal Therapeutic Hypothermia.*

18. Alsaleem M, Hpa N, Kumar VHS. Stridor in infants with hypoxic-ischemic encephalopathy and whole body hypothermia: A case series. *J Neonatal Perinatal Med.* 2020;13(4):463-468.

19. Kebaya LMN, Kiruja J, Maina M, Kimani S, Kerubo C, McArthur A, Munn Z, Ayieko P. Basic newborn resuscitation guidelines for healthcare providers in Maragua District Hospital: a best practice implementation project. *JBI Database System Rev Implement Rep.* 2018 Jul;16(7):1564-1581.

20. Simon LV, Shah M, Bragg BN. *StatPearls* [Internet]. StatPearls Publishing; Treasure Island (FL): Mar 19, 2024. *APGAR Score.*

21. Oliveira V, Singhvi DP, Montaldo P, Lally PJ, Mendoza J, Manerkar S, Shankaran S, Thayyil S. Therapeutic hypothermia in mild neonatal encephalopathy: a national survey of practice in the UK. *Arch Dis Child Fetal Neonatal Ed.* 2018 Jul;103(4):F388-F390.

22. Alsaleem M, Saadeh L, Elberson V, Kumar VHS. Subcutaneous fat necrosis, a rare but serious side effect of hypoxic-ischemic encephalopathy and whole-body hypothermia. *J Perinat Med.* 2019 Nov 26;47(9):986-990.

23. Pappas A, Shankaran S, Laptook AR, Langer JC, Bara R, Ehrenkranz RA, Goldberg RN, Das A, Higgins RD, Tyson JE, Walsh MC., Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Hypocarbia and adverse outcome in neonatal hypoxic-ischemic encephalopathy. *J Pediatr.* 2011 May;158(5):752-758.e1.

24. Klinger G, Beyene J, Shah P, Perlman M. Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? *Arch Dis Child Fetal Neonatal Ed.* 2005 Jan;90(1):F49-52.

25. McGowan JE, Perlman JM. Glucose management during and after intensive delivery room resuscitation. *Clin Perinatol.* 2006 Mar;33(1):183-96, x.

26. Riley C, Spies LA, Prater L, Garner SL. Improving Neonatal Outcomes Through Global Professional Development. *Adv Neonatal Care*. 2019 Feb;19(1):56-64.
27. Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. *Int J Mol Sci*. 2021 Feb 07;22(4)
28. Wu YW, Monsell SE, Glass HC, Wisnowski JL, Mathur AM, McKinstry RC, Bluml S, Gonzalez FF, Comstock BA, Heagerty PJ, Juul SE. How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy? *Pediatr Res*. 2023 Sep;94(3):1018-1025.
29. Ambalavanan N, Shankaran S, Laptook AR, Carper BA, Das A, Carlo WA, Cotten CM, Duncan AF, Higgins RD., EUNICE KENNEDY SHRIVER NICHD NEONATAL RESEARCH NETWORK. Early Determination of Prognosis in Neonatal Moderate or Severe Hypoxic-Ischemic Encephalopathy. *Pediatrics*. 2021 Jun;147(6)
30. Ambalavanan N, Carlo WA, Shankaran S, Bann CM, Emrich SL, Higgins RD, Tyson JE, O'Shea TM, Laptook AR, Ehrenkranz RA, Donovan EF, Walsh MC, Goldberg RN, Das A., National Institute of Child Health and Human Development Neonatal Research Network. Predicting outcomes of neonates diagnosed with hypoxic-ischemic encephalopathy. *Pediatrics*. 2006 Nov;118(5):2084-93.
31. Gazzolo D, Marinoni E, Di Iorio R, Bruschettini M, Kornacka M, Lituania M, Majewska U, Serra G, Michetti F. Urinary S100B protein measurements: A tool for the early identification of hypoxic-ischemic encephalopathy in asphyxiated full-term infants. *Crit Care Med*. 2004 Jan;32(1):131-6.