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Abstract  

Background: The clinical management of thyroid disorders, ranging from autoimmune conditions to cancer, 

generates vast amounts of unstructured data within Electronic Health Records (EHRs). This data, embedded in 

clinical notes, radiology reports, and pathology summaries, contains rich phenotypic details that are largely 

inaccessible to traditional analytical methods, creating a significant information gap for research and precision care. 

Aim: This narrative review aims to synthesize the current landscape, methodologies, challenges, and future 

directions of applying Natural Language Processing (NLP) to mine EHRs for thyroidology. It evaluates how NLP 

can transform unstructured text into structured data to enhance patient stratification, support clinical decisions, and 

advance epidemiological research. Methods: A comprehensive literature search was conducted across PubMed, 

IEEE Xplore, and ACL Anthology for studies published between 2010 and 2024, using keywords related to NLP, 

EHRs, and thyroid disorders. Relevant studies were selected and thematically analyzed. Results: The review 

identifies key NLP architectures—from rule-based systems to deep learning models—successfully applied to 

extract thyroid-specific concepts, automate TI-RADS scoring, predict outcomes, and identify adverse events. 

However, significant challenges persist, including data heterogeneity, clinical nuance, and ethical concerns 

regarding bias and generalizability. Conclusion: NLP is a powerful, transformative tool for thyroid care, poised to 

unlock latent insights from EHRs. Realizing its full potential requires interdisciplinary collaboration, robust 

validation, and the development of standardized, ethically aware frameworks to integrate these technologies into 

clinical workflows and research infrastructures. 
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_____________________________________________________________________________________________________

Introduction 

The rising global prevalence of thyroid 

disorders, including hypothyroidism, 

hyperthyroidism, thyroid nodules, and thyroid cancer, 

presents a formidable challenge to healthcare systems 

(Taylor et al., 2018). The management of these 

conditions is inherently information-intensive, relying 

on the synthesis of symptoms, laboratory values, 

imaging descriptors, cytopathological findings, and 

longitudinal treatment responses. The widespread 

adoption of Electronic Health Records (EHRs) has 

digitized this clinical narrative, creating vast 

repositories of patient data. However, a critical 

paradox exists: while data abundance is greater than 

ever, actionable knowledge remains constrained. An 

estimated 80% of clinically relevant information in 

EHRs is stored as unstructured free text—radiologists' 

impressions, operative notes, endocrinologists' 
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progress notes, and pathology reports (Wang et al., 

2018). This unstructured data encapsulates the nuance 

and clinical reasoning essential for personalized care 

but is inaccessible to conventional data analytics, 

which depend on structured fields like diagnosis codes 

and lab numbers. 

This gap between data availability and 

insight extraction is where Natural Language 

Processing (NLP) emerges as a pivotal technology. 

NLP, a subfield of artificial intelligence (AI) and 

computational linguistics, provides the methodologies 

to computationally understand, interpret, and 

manipulate human language (Devlin et al., 2019). In 

healthcare, NLP applied to EHRs—often called 

clinical NLP—aims to transform unstructured text into 

structured, computable data. This capability is 

particularly salient for thyroidology. The specialty's 

dependence on descriptive diagnostics (Ultrasound 

TI-RADS lexicon, Bethesda System for cytology), 

nuanced treatment decisions, and long-term 

surveillance generates text-rich records perfect for 

NLP mining (Haugen et al., 2016). 

This narrative review synthesizes the 

evolution, current state, and future trajectory of NLP 

applications in thyroid care. We will explore the 

fundamental architectures of NLP systems, from early 

rule-based approaches to contemporary deep learning 

models. A critical analysis of their application to 

specific tasks—such as phenotype identification, 

nodule risk stratification, outcome prediction, and 

adverse event detection—will be presented. The 

review will also confront the significant challenges of 

data heterogeneity, model bias, and clinical 

integration, while proposing a roadmap for translating 

NLP research into robust, equitable tools that enhance 

patient stratification and empower clinical decision 

support. 

Thyroid Care in the Era of the Electronic Health 

Record 
The modern EHR is a mosaic of data types, 

each contributing a piece to the thyroid patient's 

puzzle. Structured data includes laboratory results 

(TSH, Free T4, Thyroglobulin), medication lists 

(levothyroxine, methimazole), and coded diagnoses 

using the International Classification of Diseases 

(ICD). While crucial, these elements offer a skeletal 

view. The "clinical flesh" is found in the unstructured 

narratives. Radiology reports describe nodule 

echogenicity, margins, and composition using 

standardized lexicons like TI-RADS, but in prose form 

(Tessler et al., 2017). Pathology reports detail 

cytologic and histologic findings, referencing the 

Bethesda System and cancer staging criteria (Cibas & 

Ali, 2017). Progress notes capture symptom evolution, 

family history, and therapeutic rationale. Discharge 

summaries consolidate the entire care episode. 

Mining this textual data manually for 

research or quality improvement is prohibitively time-

consuming and prone to error. Furthermore, reliance 

on structured codes alone is deeply flawed for thyroid 

research (Xue et al., 2022). ICD codes for thyroid 

cancer, for example, lack specificity for histologic 

subtype, and codes for hypothyroidism do not capture 

etiology (e.g., Hashimoto’s vs. post-RAI) (Brito et al., 

2014). This leads to misclassification bias and hinders 

precise cohort identification for clinical trials or 

outcomes research. NLP promises to overcome these 

limitations by extracting and codifying the detailed 

information locked in text, enabling the creation of 

rich, patient-specific phenotypes that reflect true 

clinical complexity (Shi et al., 2022).  

Foundations of Clinical Natural Language 

Processing 
The evolution of clinical NLP mirrors 

advances in AI. Early systems were predominantly 

rule-based or dictionary-driven. These methods rely 

on lexicons of clinical terms and hand-crafted 

grammatical rules to identify concepts. For instance, a 

rule might specify that the phrase "hypoechoic nodule" 

within three words of "microcalcifications" indicates a 

high-risk feature. Systems like the Clinical Text 

Analysis and Knowledge Extraction System 

(cTAKES) were pioneers in this space, providing 

open-source frameworks for concept extraction 

(Savova et al., 2010). While transparent and effective 

for specific, well-defined tasks, rule-based systems are 

brittle. They struggle with linguistic variation, 

negation ("no suspicious features"), and contextual 

ambiguity, requiring extensive, domain-specific 

engineering. 

The advent of machine learning (ML) 

introduced statistical models that learn patterns from 

annotated examples. Models like Conditional Random 

Fields could learn to label sequences of words (token-

level) to identify entities such as "Medication" or 

"Disease" (Li et al., 2022). The true paradigm shift, 

however, came with deep learning and the 

development of transformer-based language models. 

Models like BERT (Bidirectional Encoder 

Representations from Transformers) and its 

biomedical variants (BioBERT, ClinicalBERT) are 

pre-trained on massive corpora of text, learning deep 

contextual representations of language (Lee et al., 

2020). They understand that "mass" in an oncology 

note differs from "mass" in physics. These models can 

be fine-tuned with relatively small sets of labeled 

clinical notes to perform state-of-the-art tasks like 

named entity recognition (NER), relation extraction, 

and document classification with remarkable 

accuracy, significantly reducing the need for manual 

feature engineering (Liu et al., 2020). Table 1 & 

Figure 1 depict a schematic overview of an NLP-

driven analytics pipeline for thyroid care. 

Unstructured EHR text sources (clinical notes, 

radiology reports, pathology summaries) are 

processed through NLP architectures ranging from 

rule-based systems to transformer models. 
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Table 1: Comparison of NLP Architectures for Clinical Text Mining 

Architecture Description Pros Cons Example 

Thyroid 

Application 

Rule-Based Uses lexicons & hand-

written 

grammatical/syntactic 

rules. 

Transparent, 

interpretable, and 

effective for 

consistent 

phrasing. 

Brittle, labor-intensive 

to create/maintain, 

poor with 

variation/negation. 

Extracting 

"nodule size > 

4cm" from 

ultrasound 

reports. 

Traditional 

Machine 

Learning (e.g., 

SVM, CRF) 

Uses statistical models 

trained on feature-

annotated datasets. 

More robust to 

variation than 

rules; well-

established. 

Requires heavy feature 

engineering; 

performance plateaus. 

Classifying 

pathology 

reports as 

benign vs. 

malignant. 

Deep Learning 

(e.g., RNNs, 

CNNs) 

Uses neural networks to 

automatically learn 

feature representations. 

Reduces need for 

feature 

engineering; 

good sequential 

modeling. 

Requires large 

datasets; can be a 

"black box." 

Temporal 

modeling of 

treatment 

response from 

notes. 

Transformer 

Models (e.g., 

BERT, 

BioBERT) 

Uses self-attention 

mechanisms pre-trained 

on vast text corpora. 

State-of-the-art 

performance; 

understands deep 

context. 

Computationally 

intensive; requires 

fine-tuning; "black 

box." 

Extracting 

complex 

phenotypes 

(e.g., RAI-

refractory 

disease). 

 
Figure 1. NLP-Enabled Pipeline for Thyroid 

Patient Stratification from EHRs 

NLP Applications in Thyroidology 

Phenotyping and Cohort Identification 

A foundational application is the accurate 

identification of patient cohorts. NLP can move 

beyond ICD codes to find patients with specific 

phenotypes. For example, Shin et al. (2021) used an 

NLP algorithm on clinical notes to identify patients 

with thyroid eye disease (TED), accurately 

distinguishing active from inactive disease based on 

descriptive symptoms and clinical findings mentioned 

in ophthalmology and endocrinology notes. Similarly, 

NLP can parse notes to determine the etiology of 

hypothyroidism (e.g., identifying mentions of 

"Hashimoto's," "thyroiditis," or "post-thyroidectomy") 

or to find patients with rare conditions like resistance 

to thyroid hormone (Wang et al., 2020). This enables 

more precise recruitment for clinical trials and more 

accurate observational studies on disease natural 

history (Shcherbak et al., 2022).  

Imaging and Pathology Report Mining 

Thyroid nodule management is guided by 

risk stratification systems. NLP excels at automating 

this. Algorithms can parse ultrasound reports to extract 

TI-RADS features (composition, echogenicity, shape, 

margin, echogenic foci) and calculate a risk score 

automatically (Zhao et al., 2021). This not only 

standardizes reporting but also enables large-scale 

audits of real-world nodule management against 

established guidelines. In pathology, NLP can classify 

fine-needle aspiration (FNA) reports according to the 

Bethesda System, identify non-diagnostic samples, 

and even extract key prognostic features from surgical 

pathology reports for thyroid cancer, such as 

lymphovascular invasion or extrathyroidal extension 

(Wong et al., 2023). This automates registry data 

entry, facilitating rapid case identification for tumor 

boards (Zhang et al., 2023).  

Outcome Prediction and Prognostication 

By integrating structured data with rich 

phenotypes extracted via NLP, predictive models gain 

power. For instance, combining extracted features 

from operative notes ("parathyroid 

autotransplantation") and post-operative notes 

(symptoms of "tingling" or "cramps") with lab values 
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can improve the prediction of hypoparathyroidism risk 

after total thyroidectomy (Al-Dhahri et al., 2014). In 

thyroid cancer, mining oncology notes for terms 

related to treatment response ("rising thyroglobulin," 

"structural progression") and imaging reports can help 

predict recurrence risk or identify patients with RAI-

refractory disease earlier than structured data alone 

would allow (Lamartina et al., 2018). 

Adverse Event and Comorbidity Surveillance 

NLP is a powerful tool for 

pharmacovigilance and outcomes monitoring. It can 

scan clinical notes for undocumented side effects of 

anti-thyroid drugs (agranulocytosis, hepatotoxicity) or 

chronic conditions associated with thyroid 

dysfunction, such as atrial fibrillation in thyrotoxicosis 

or depression in hypothyroidism (Chaker et al., 2016). 

This supports real-world safety studies and helps map 

the complex comorbidity networks in thyroid patients 

(Table 2). Figure 2 illustrates key applications of 

natural language processing in thyroid care. 

Table 2: Exemplar Studies Applying NLP to Thyroid Care (2015-2024) 

Study 

(Author, 

Year) 

Primary NLP Task Data Source Key Finding/Application 

Wong et 

al., 2023 

Bethesda System 

classification from cytology 

reports. 

Pathology reports 

from a multi-hospital 

network. 

NLP model achieved >95% accuracy in 

classifying FNA reports, enabling 

automated cancer registry updates. 

Zhao et al., 

2021 

Automated TI-RADS 

scoring from ultrasound 

reports. 

Retrospective 

ultrasound reports. 

Model extracted features with high F1-

scores (>0.88), demonstrating feasibility 

for clinical decision support. 

Shin et al., 

2021 

Phenotyping Thyroid Eye 

Disease (TED) activity. 

Ophthalmology & 

endocrinology clinical 

notes. 

NLP algorithm accurately identified 

active vs. inactive TED, outperforming 

billing code-based methods. 

Al-Dhahri 

et al., 2014 

Predicting post-

thyroidectomy 

hypoparathyroidism. 

Operative & post-

operative notes + labs. 

Model incorporating NLP-extracted 

surgical details outperformed models 

using labs alone. 

Wang et 

al., 2020 

Identifying rare thyroid 

disorder cases. 

Longitudinal EHR 

notes across 

specialties. 

NLP-enabled case-finding facilitated 

recruitment for a study on genetic 

thyroid disorders. 

 
Figure 2. Clinical Applications of NLP Across the 

Thyroid Care Continuum 

Critical Challenges and Ethical Considerations 
Despite its promise, the path to integrating 

NLP into routine thyroid care is fraught with 

challenges. 

Data and Technical Hurdles 

EHR data is notoriously heterogeneous, with 

variations in documentation styles, templates, and 

abbreviations across institutions and even individual 

clinicians (Baclic et al., 2020). An NLP model trained 

on data from one academic hospital may fail in a 

community setting. Clinical language is dense with 

implicit knowledge, hedging ("suspicious for"), and 

complex coreferences (e.g., "the nodule" mentioned in 

paragraph three). Robust NLP systems must handle 

negation, temporality, and experiencer (e.g., family 

history vs. patient history) accurately (Uzuner et al., 

2011). Furthermore, the "gold standard" for training 

and validation—manual chart review by clinicians—

is expensive and time-consuming to produce at scale 

(Aversano et al., 2021). 

Bias, Fairness, and Generalizability 

AI models can perpetuate and amplify biases 

present in their training data. If EHR data from a 

particular demographic group (a specific racial, ethnic, 

or socioeconomic group) is underrepresented or 

documented differently, an NLP model may perform 

poorly for that group (Obermeyer et al., 2019). This 

could lead to disparities in automated risk 

stratification or clinical alerting. Ensuring fairness and 

auditing for bias are non-negotiable prerequisites for 

clinical deployment (Cary Jr et al., 2023).  

Clinical Integration and Evaluation 

The ultimate metric for any clinical NLP tool 

is whether it improves patient outcomes or clinician 

workflow. Moving from a research prototype to a 

validated clinical decision support system requires 

rigorous prospective evaluation in real-world settings. 

Integration into the clinician's EHR workflow must be 

seamless and non-disruptive, providing actionable 
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information at the point of care (Sutton et al., 2020). 

Questions of liability, interpretability (why did the 

model make this recommendation?), and clinician 

trust remain significant barriers. 

Future Directions and Conclusion 
The future of NLP in thyroid care is 

integrative and translational. Next-generation systems 

will move beyond information extraction to true 

language understanding, capable of generating clinical 

summaries or drafting follow-up plans based on a 

patient's record (Kung et al., 2023). Multimodal AI 

models that jointly analyze text, medical images 

(ultrasound, CT scans), and genomic data will provide 

a holistic view of the patient (Huang et al., 2020). 

Federated learning approaches, where models are 

trained across multiple institutions without sharing 

raw patient data, offer a path to developing more 

robust and generalizable tools while preserving 

privacy (Rieke et al., 2020). 

In conclusion, NLP stands as a key to 

unlocking the immense, untapped potential of 

unstructured data in thyroidology. It offers a pathway 

from descriptive, reactive documentation to 

predictive, proactive, and personalized care. By 

automating the extraction of detailed phenotypes, risk 

scores, and outcomes, NLP can power higher-quality 

research, refine clinical guidelines, and provide 

clinicians with intelligent tools for stratification and 

decision support. Realizing this vision demands a 

sustained, interdisciplinary collaboration among 

endocrinologists, surgeons, radiologists, pathologists, 

computer scientists, and ethicists. Together, they must 

build standardized, equitable, and clinically validated 

NLP systems that seamlessly integrate into the care 

continuum, ultimately enhancing the precision and 

quality of life for patients with thyroid disorders. 
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