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Abstract

Background: The early detection of infectious disease outbreaks is a critical public health imperative. Traditional surveillance,
reliant on confirmed laboratory reports, often introduces a critical delay. The concept of the biosurveillance continuum
advocates for the real-time integration of pre-diagnostic data streams from across the healthcare ecosystem to provide earlier
warning. Aim: This narrative review systematically synthesizes the literature on integrated systems that combine syndromic
Emergency Medical Services (EMS) data, over-the-counter (OTC) pharmacy sales, radiology findings, and nursing home
reports for the early detection of infectious disease outbreaks. Methods: A systematic search was conducted across
PubMed/MEDLINE, CINAHL, Scopus, and IEEE Xplore for studies published between 2010-2024. A narrative synthesis was
performed, analyzing system architectures, detection performance, and implementation challenges. Results: Each data stream
offers unique benefits for public health monitoring. EMS data ensures geographic and temporal insight into illnesses like
influenza-like illness (ILI). Over-the-counter (OTC) sales data reflect symptom onset across populations. NLP analysis of
radiology reports can detect pneumonia cluster patterns before definitive diagnosis. Nursing home data provides vital
surveillance for high-risk groups. Effective integration of these sources necessitates Health Informatics platforms for data
aggregation and visualization, supported by robust epidemiological frameworks. Conclusion: An integrated biosurveillance
system utilizing EMS, pharmacy, radiology, and nursing home data can improve early outbreak detection. However, challenges
such as data standardization, interoperability, privacy, and collaboration must be addressed to maximize its effectiveness.
Investing in these systems is crucial for pandemic preparedness.
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Introduction

The rapid emergence and global spread of
infectious diseases, such as HIN1 influenza, Ebola,
COVID-19, and mpox, have starkly exposed the
limitations of traditional public health surveillance
(Chretien et al., 2016). Conventional systems, which
depend on laboratory-confirmed case reports from
healthcare facilities, introduce an inherent and often
fatal delay—the diagnostic gap—between community

transmission and public health awareness (Cassell et
al.,, 2022). This lag undermines the effectiveness of
critical containment measures like contact tracing,
quarantine, and resource mobilization. In response, the
paradigm of biosurveillance has evolved,
emphasizing the proactive, real-time collection,
analysis, and interpretation of diverse data streams for
early event detection and situational awareness (Dugas
etal., 2013). Moving beyond singular data sources, the
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modern concept is that of a biosurveillance
continuum: an integrated system that synthesizes pre-
diagnostic, syndromic indicators from across the
community’s health landscape to create a faster, more
granular picture of emerging threats (Zeng et al.,
2021).

This continuum strategically incorporates
data from non-traditional but highly informative
sources. Emergency Medical Services (EMS) records,
capturing patient chief complaints and dispatch codes
from the pre-hospital setting, offer unparalleled
spatiotemporal granularity for syndromes like
influenza-like illness (ILI) or gastrointestinal distress,
often hours or days before hospital admission (Shah et
al.,, 2021). Over-the-counter (OTC) pharmacy
salesdata act as a population-level behavioral
biomarker; increased purchases of antipyretics, cough
suppressants, or antidiarrheals serve as a direct proxy
for symptom prevalence in the community (Andersson
et al., 2014). Radiology reports, particularly chest
imaging, contain rich phenotypic data. Through
natural language processing (NLP) and, increasingly,
artificial intelligence (Al) image analysis, clusters of
specific  findings (e.g., bilateral ground-glass
opacities) can signal novel respiratory outbreaks
before pathogen identification (Liang et al., 2019;
Syrowatka et al., 2021). Nursing home and long-term
care facility (LTCF) reports provide sentinel
surveillance in exceptionally vulnerable, congregate
settings where outbreaks are severe and early
detection is paramount (Thrupp et al., 2004; Mathes et
al., 2017).

The power of this approach lies not in any
single stream, but in its integration, a task that sits at
the intersection of multiple
disciplines. Epidemiology provides the core analytical
framework for outbreak detection and signal
validation. Health Security frames the imperative,
driving investment in preparedness against biological
threats. The pharmacy offers the OTC sales data
pipeline. Emergency Medical Services contributes to
the pre-hospital syndromic feed. Nursing facilitates
the structured reporting from frontline care settings
like LTCFs. Radiology generates the crucial imaging-
derived phenotypes. Finally, Health Informatics is the
essential enabling discipline, providing the platforms
for automated data aggregation, standardization,
advanced analytics, and visualization (Khan et al.,
2018). This review aims to systematically synthesize
the literature from 2010-2024 on integrated
biosurveillance systems that incorporate two or more
of these key data streams—EMS, OTC pharmacy,
radiology, and nursing home reports. It will examine
their technical architectures, documented performance
in early detection, and the cross-cutting challenges of
implementation, to inform the development of more
resilient public health surveillance infrastructures.
Methods

This narrative review employed a systematic
search strategy to ensure a comprehensive and
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reproducible identification of relevant literature.
Searches were conducted in four electronic databases
chosen for their coverage of biomedical, clinical,
informatics, and engineering literature:
PubMed/MEDLINE, CINAHL, Scopus, and IEEE
Xplore. The search strategy combined controlled
vocabulary (e.g., MeSH terms) and keywords related
to four core concepts:
(1) Biosurveillance/Surveillance (“biosurveillance",
"syndromic surveillance", "early detection", "outbreak
detection™); (2) Data Sources (“emergency medical
services", "EMS", "prehospital”, "over-the-counter",
"pharmacy sales”, "radiology reports”, "medical
imaging", "nursing home", "long-term care facility");
(3) Integration ("data integration”, "multi-source",
"interoperability”, "public health informatics™); and
(4) Infectious Disease ("infectious disease™,
"outbreak", "pandemic”, "influenza", "respiratory
infection™). Boolean operators (AND, OR) were used
to link concepts. The search was restricted to articles
published in English between January 1, 2010, and
May 1, 2024, to capture the modern era of digital
surveillance and lessons from recent pandemics.

Inclusion Criteria encompassed: (a) peer-
reviewed original research articles, systematic
reviews, or significant case studies; (b) focus on
electronic or automated biosurveillance systems; (c)
description of systems integrating at least two of the
four target data streams (EMS, OTC pharmacy,
radiology, nursing home); and (d) evaluation or
discussion of the system’s application for early
infectious disease outbreak detection. Exclusion
Criteria were: (a) studies describing single-source
surveillance only; (b) commentaries or editorials
without original data or systematic analysis; (c)
studies focused exclusively on chronic disease or non-
infectious outcomes; and (d) articles not available in
full text.

Given the heterogeneity in study designs,
system architectures, and outcome measures, a formal
meta-analysis was not feasible. Instead, a narrative
synthesis approach was adopted (Wong et al., 2013).
Extracted data included study design, data sources
integrated, technical methods for integration and
analysis, primary findings related to timeliness and
sensitivity/specificity, and reported implementation
challenges. Findings were organized thematically to
construct a coherent overview of the field, focusing on
the value of each data stream, integration paradigms,
and cross-cutting barriers.

The Value of Individual Data Streams in the
Continuum

Emergency Medical Services (EMS) Data as The
Pre-Hospital Pulse

EMS data, derived from electronic patient
care reports (ePCRs) and computer-aided dispatch
(CAD) systems, represent one of the most temporally
and geographically precise syndromic surveillance
sources (Shah et al.,, 2021). By capturing chief
complaints (e.g., "fever,” "difficulty breathing,"
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"diarrhea") at the moment of first professional medical
contact, often in the patient’s home, EMS data can
provide a lead time of 24-72 hours over hospital
discharge diagnoses and 1-2 weeks over mortality data
(Duijster et al., 2019). Studies have consistently
demonstrated the utility of EMS syndromic indicators
for tracking ILI activity, with strong correlations to
confirmed influenza cases and hospitalizations
(Hswen et al., 2017; Rosenkoétter et al., 2013). For
example, a system monitoring EMS dispatch codes for
"sick person" and "breathing problems” in Texas
provided reliable early warning for seasonal influenza
peaks (Sugishita et al., 2020).

Beyond influenza, EMS data have shown
promise in detecting outbreaks of gastrointestinal
illness and even novel threats; anomalous clusters of
respiratory distress calls were noted in some regions in
the very early stages of the COVID-19 pandemic
(Ferraro et al., 2021). The strengths of EMS data are
their objectivity, automation, and fine-grained
location data, which enable hotspot mapping.
Limitations include the need for robust syndromic
categorization algorithms to map free-text chief
complaints to standardized syndromes and the
potential for confounding by non-infectious causes of
similar symptoms (e.g., asthma, heart failure) (Ising et
al., 2016).

Over-the-Counter (OTC) Pharmacy Sales as A
Population Behavioral Biomarker

Purchases of OTC medications are a direct,
population-level indicator of symptom mitigation
behavior, offering a complementary signal to
healthcare-seeking data (Andersson et al., 2014).
Individuals often self-medicate for several days before
seeking professional care, making OTC sales a leading
indicator. Key product categories for surveillance
include antipyretics/analgesics (e.g., acetaminophen,
ibuprofen), cough/cold remedies, anti-diarrheals, and
pediatric electrolyte solutions (Wagner et al., 2001).
Research has established strong correlations between
spikes in OTC sales of these items and subsequent
increases in laboratory-confirmed cases of influenza
and norovirus (Ramay et al., 2022; Muchaal et al.,
2015). During the 2009 HIN1 pandemic, OTC
medication sales in Japan provided a 1-2 week lead
time over official case reports (Yamana et al., 2017).
The advantages of pharmacy data are their near real-
time availability (via point-of-sale systems), high
population coverage, and ability to capture mild cases
that never enter the healthcare system. Major
challenges include commercial confidentiality, the
need for partnerships with pharmacy chains or
aggregators, and confounding by factors like sales
promotions, seasonal purchasing patterns, and media-
driven "panic buying," which require sophisticated
statistical filtering to isolate true outbreak signals
(Hulth et al., 2009).

Radiology Findings as the Phenotypic Gold Mine

Radiology reports, particularly for chest X-
rays (CXR) and computed tomography (CT), contain
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detailed phenotypic descriptions of disease that can be
highly specific for certain pathogens or syndromes.
Traditionally underutilized for surveillance due to
their unstructured text format, advances in NLP and
Al are unlocking their potential (Liang et al., 2019).
NLP algorithms can scan dictated reports for key
terms and phrases indicating infectious processes
(e.g., "consolidation,” "ground-glass opacity,"
"bilateral," "multifocal"). This approach proved
valuable during COVID-19, where NLP-based
surveillance of "pneumonia” findings in emergency
department radiology reports provided earlier
community-level detection than PCR test results in
some settings (Soltan et al., 2021). Beyond NLP, Al-
based image analysis (radiomics) can directly analyze
imaging pixels to identify subtle, quantifiable patterns
associated with specific infectious etiologies or
severities (Syrowatka et al., 2021). A chest CT Al
model, for instance, could differentiate COVID-19
pneumonia from other causes with high accuracy,
offering a rapid "imaging biomarker" during testing
shortages (Mei et al., 2020). The strength of radiology
data is its objective clinical evidence of pathology,
providing a high-specificity signal that can validate
softer syndromic data. Limitations include slower
turnaround compared to EMS or pharmacy data (due
to the need for image acquisition and interpretation),
access to structured report data or images, and the
challenge of normalizing findings across different
radiologists and institutions (Kohli et al., 2017).
Nursing Home and Long-Term Care Facility
(LTCF) Reports

Residents of nursing homes and LTCFs
represent a canary-in-the-coal-mine population: they
are older, have multiple comorbidities, live in close
quarters, and experience severe outcomes from
infections, making these facilities high-risk sentinel
sites (Thrupp et al., 2004). Mandatory or voluntary
reporting of infectious disease incidents (e.g.,
influenza-like illness, gastroenteritis, COVID-19
cases) from LTCFs to public health authorities is a
well-established practice. When digitized and
automated, these reports become a powerful stream
within the biosurveillance continuum (Mathes et al.,
2017). Early clusters in LTCFs often precede wider
community spread, as seen starkly with COVID-19
(McMichael et al., 2020). Automated daily reporting
systems for symptoms and staffing shortages, as
implemented in some jurisdictions during the
pandemic, enabled rapid intervention and containment
(Stone et al.,, 2012). The advantages are direct
reporting from high-risk settings and the potential for
very early, specific signals. Challenges include the
burden of reporting on facility staff, variability in data
quality and completeness, and ensuring rapid data
flow from often resource-strapped facilities into public
health systems (Hughes et al., 2020). Table 1
summarizes the characteristics and utility of core data
streams in the Biosurveillance continuum.
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Table 1: Characteristics and Utility of Core Data Streams in the Biosurveillance Continuum

Data Stream  Key Indicators Lead Time Primary Key Challenges &
Advantage Strengths Limitations

EMS Data Chief 1-3 days before High Requires syndromic

complaint/diagnosis hospitalization. spatiotemporal categorization; non-

codes (e.g., fever, granularity; specific signals; can be
breathing difficulty, automated; confounded by chronic
diarrhea). captures conditions.
community-onset
illness.
oTC Sales  volume  of 3-7 days before Captures Commercially sensitive;

Pharmacy antipyretics, case mild/self-treated confounded by
Sales cough/cold, anti-  confirmation. cases; near real- promotions/panic
diarrheal medications. time; strong buying; requires
population-level partnership with retailers.
behavioral proxy.
Radiology NLP-extracted findings 0-5 days High clinical  Slower data  flow;
Reports (e.q., "pneumonia,” (depends on care specificity; requires advanced
"ground-glass pathway). provides objective NLP/AI; data access and
opacities”); Al image phenotypic standardization  across
analysis. evidence of institutions.
pathology.
Nursing Reports of ILI clusters, Variable; can be Direct data from Reporting burden; data
Home/LTCF Gl outbreaks, and wvery early in high-risk sentinel quality/completeness
Reports confirmed cases among vulnerable sites enables issues, limited to a
residents/staff. populations. targeted specific sub-population.

intervention.

Architectures for Integration

The transformative potential of the
biosurveillance continuum is realized only through the
integration of disparate data streams, a task
fundamentally dependent on Health Informatics.
Effective integration architectures move beyond
simple data co-location to create interoperable,
analytic systems capable of generating actionable
intelligence (Khan et al., 2018).

A common model is the centralized data
warehouse or hub, where multiple-source data are
extracted, transformed, and loaded (ETL) into a
common repository. Data from EMS agencies (via
Health Level Seven [HL7] messages), pharmacy sales
aggregators, radiology reporting systems, and LTCF
electronic health records (EHRS) are normalized to
common data models, such as the Public Health
Information Network (PHIN) Vocabulary or Fast
Healthcare Interoperability — Resources (FHIR)
standards (Dixon et al., 2011). This allows for unified
querying and analysis. For example, BioSense (now
the National Syndromic Surveillance Program, NSSP,
in the U.S.) provides a platform that integrates
emergency department, urgent care, and increasingly,
EMS data for national syndromic surveillance (Dugas
etal., 2013).

More advanced architectures
employ distributed or federated data approaches. In
these models, data remain at their source institutions
(preserving privacy and control) while analytic queries
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are distributed and executed locally, with only
aggregated results or statistical signals shared. This is
particularly relevant for sensitive data like detailed
radiology images or proprietary pharmacy sales
figures  (Rumbold &  Pierscionek,  2017).
The Spatiotemporal Epidemiological Modeler
(STEM) from IBM and other open-source platforms
support such federated analytics for outbreak
modeling (Grannis et al., 2010).

The analytic engine itself utilizes a suite
of statistical and machine learning (ML) algorithms to
convert raw data into alerts. Baseline models (e.g.,
historical moving averages, regression models)
establish expected levels for each data stream
(Buckeridge, 2007). Anomaly detection algorithms,
such as the Early Aberration Reporting System
(EARS) C1-C3 methods or more sophisticated space-
time scan statistics (e.g., SaTScan), then identify
statistically significant deviations that may represent
an outbreak (Kleinman & Abrams, 2006). Machine
learning models are increasingly used to weigh and
combine signals from multiple streams, potentially
improving the signal-to-noise ratio and predictive
power (Zeng et al., 2021). Finally, visualization
dashboards are critical for translating complex, multi-
dimensional data into intuitive formats for public
health decision-makers. These dashboards often
feature interactive maps of case clusters, time-series
graphs of syndromic indicators, and alert logs
(Johansson et al., 2016).
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Performance and Impact

Empirical evidence suggests that integrating
multiple pre-diagnostic data streams enhances early
outbreak detection compared to reliance on any single
source or traditional laboratory reporting. The value is
often additive or synergistic, with different streams
contributing unique lead times and specificities.

Studies evaluating multi-source systems have
demonstrated improved timeliness. Research on a
system combining OTC pharmacy sales, school
absenteeism, and web search queries showed it could
detect seasonal influenza outbreaks 1-2 weeks earlier
than physician-based surveillance (Hulth et al., 2009).
A system integrating EMS dispatch data with
emergency department visits provided more
geographically precise and timely signals for ILI than
either source alone (Sugishita et al., 2020). During the
COVID-19 pandemic, integrated systems that fused
mobility data, online searches, and syndromic
surveillance provided early indications of community
transmission in areas with limited testing capacity
(Menni et al., 2020).

The integration of radiology data adds a layer
of phenotypic validation. A study in a large healthcare
system found that an NLP algorithm monitoring chest
CT reports for terms consistent with viral pneumonia
flagged a rising trend days before the first confirmed
COVID-19 case was reported in that region, providing
a crucial internal warning (Soltan et al., 2021).
Similarly, nursing home outbreak reports often serve
as the first concrete signal of community transmission
for pathogens such as influenza or norovirus,
triggering broader public health investigations
(Mathes et al., 2017).

However, measuring the true "impact”
extends beyond statistical lead time. Key outcome
measures include sensitivity (ability to detect true
outbreaks), specificity (avoiding false
alarms), positive predictive value, and ultimately,
the effect on public health decision-making and
outcomes (e.g., earlier intervention reducing attack
rates). The literature indicates a common trade-off:
highly sensitive systems (such as raw OTC sales) may
generate many false alerts, while highly specific
systems (such as confirmed radiology findings) may
miss early, mild cases (Buckeridge, 2007). Intelligent
integration aims to optimize this balance—using a
sensitive stream like EMS data to cast a wide net and
a specific stream like radiology or LTCF reports to
validate and prioritize signals.
Critical Challenges and
Implementation

Despite its demonstrable promise, the
operationalization of an effective, multi-source
biosurveillance continuum encounters profound,
multifaceted barriers that span technical, ethical, legal,
and organizational domains, often impeding
translation from proof-of-concept to sustainable
public health infrastructure.

Barriers to
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Technical and Data Challenges constitute a
primary layer of complexity. A fundamental hurdle is
achieving interoperability and
standardization across disparate data ecosystems.
Biosurveillance streams originate from heterogeneous
sources—EMS ePCRs, pharmacy POS systems,
hospital radiology information systems (RIS), and
LTCF electronic records—each employing different
data formats, coding schemas (e.g., ICD-10,
SNOMED CT, proprietary codes), and quality
controls. Achieving true semantic interoperability,
where a concept like "fever" or "respiratory distress"
is consistently and accurately represented across all
systems, requires sustained investment in common
data models (e.g., FHIR) and meticulous mapping
efforts (Dixon et al., 2011). Furthermore, the utility of
early detection is directly undermined by issues
of data latency and completeness. The lead-time
advantage is negated if pharmacy sales data are
batched weekly, nursing home reports are submitted
manually days after an event manually, or radiology
dictations await transcription. Incomplete data,
whether due to voluntary reporting, technical failures,
or resource constraints in source institutions, can
introduce significant bias and weaken statistical
signals (Cassell et al., 2022). Finally, the core of
detection lies inalgorithm development and
validation. Crafting anomaly detection algorithms
that are sensitive to true outbreaks while remaining
specific enough to filter out background noise (e.g.,
seasonal influenza trends, holiday effects, reporting
artifacts) is a complex statistical endeavor. These
models demand continuous validation against
confirmed outbreak data to prevent alert fatigue and
maintain the trust of public health practitioners
(Kleinman & Abrams, 2006).

The Ethical, Legal, and Social
Implications (ELSI) of integrated surveillance
present a parallel set of critical constraints. Privacy
and data security are paramount, as systems often
aggregate personally identifiable information (PII)
and precise location data from EMS runs or pharmacy
purchases. Robust de-identification protocols and
strict, transparent data governance frameworks
defining access rights and usage purposes are non-
negotiable to protect individual autonomy and comply
with regulations like GDPR and HIPAA (Rumbold &
Pierscionek, 2017). The cybersecurity of these
aggregated data hubs is itself a core Health
Security concern. Concurrently, data ownership and
commercial sensitivity create substantial barriers to
access. OTC sales data are valuable commercial assets
for pharmacy chains, and detailed hospital data,
including radiology images, are often considered
proprietary. Negotiating data-sharing agreements that
satisfy corporate interests while providing the
necessary granularity and timeliness for public health
is a persistent challenge (Andersson et al., 2014).
Perhaps most insidiously, integrated systems risk
perpetuating equity and bias. Surveillance signals are
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dependent on healthcare-seeking behavior and
commercial access. Underserved communities with
lower EMS utilization, less access to retail
pharmacies, or poorer digital connectivity may be
rendered "invisible" to these systems, leading to
under-detection and a misallocation of public health
resources. Furthermore, machine learning algorithms
trained on historical data that reflects these existing
disparities can encode and amplify such biases,
leading to inequitable performance across population
subgroups (Wedd et al., 2019).

Ultimately, these technical and ethical

challenges are compounded by
significant Organizational and  Sustainability
Challenges.  Success  hinges  on cross-sector

collaboration among entities with differing missions,
incentives, and cultures: public health agencies,
private healthcare systems, EMS authorities, retail

corporations, and LTCF operators. Forging and
maintaining these complex, multi-stakeholder
partnerships requires dedicated resources, clear
governance, and a compelling demonstration of
mutual benefit (Khan et al., 2018). Financial
sustainability is a recurring threat; many advanced
systems are piloted with soft grant funding, only to be
abandoned when grants expire, as ongoing operational
costs are rarely absorbed into core public health
budgets (M’ikanatha et al., 2013). Finally, a
critical workforce capacity gap exists. Public health
departments frequently lack the specialized personnel
with  expertise in Health Informatics, data
engineering, data science, and advanced epidemiology
required to architect, manage, and interpret these
complex, integrated data systems (Ye et al., 2022). A
summary of these interconnected challenges is
presented in Table 2.

Table 2: Key Challenges in Implementing Integrated Biosurveillance Systems

Challenge Domain Specific Barriers

Potential Mitigation Strategies

Technical & Data Lack of data

interoperability; variable data latency and
completeness; algorithm drift and false

alerts.

standards/semantic  Adopt FHIR/PHIN standards; incentivize

real-time data sharing agreements;
implement ongoing model validation and
recalibration.

Ethical, Legal & Social
commercial

Privacy risks with Pll/location data;
sensitivity

Implement strong de-identification and
of role-based access controls; create data-use

pharmacy/hospital data; algorithmic bias agreements with private partners; conduct

and surveillance equity.

bias audits of algorithms and data sources.

Organizational & Fragmented cross-sector collaboration;
lack of sustainable funding models;
shortage of public health informatics

Sustainability

expertise.

Establish formal data-sharing consortia
with clear governance; advocate for core
public health IT infrastructure funding;
invest in  workforce training and
partnerships with academia.

Future Directions and Conclusion

The future of the biosurveillance continuum
lies in more intelligent, automated, and equitable
systems. Artificial ~ Intelligence and  Machine
Learning will play an expanding role, not just in
analyzing single streams (e.g., radiology Al), but in
performing multi-modal fusion—synthesizing text,
sales, image, and geospatial data into unified risk
scores (Zeng et al., 2021). The concept of the "digital
twin"—a virtual model of a city or region's health
ecosystem that simulates outbreak spread under
various intervention scenarios—could revolutionize
preparedness and response planning (Elkefi & Asan,
2022). Wearable and ambient sensor data (e.g., smart
thermometers, home health devices) represent a new
frontier of passive, continuous physiologic monitoring
at the individual and community level (Menni et al.,
2020). Furthermore, global data integration through
platforms like the World Health Organization's
(WHO) Epidemic Intelligence from Open Sources
(EIOS) initiative highlights the move towards a
worldwide biosurveillance network (Nuzzo et al.,
2019).

In  conclusion, the  biosurveillance
continuum, integrating EMS, pharmacy, radiology,
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and nursing home data through robust health
informatics platforms, represents a paradigm shift
towards proactive public health defense. The evidence
synthesized in this review demonstrates that such
integration is not only feasible but also enhances the
timeliness and situational awareness of outbreak
detection. Each stream contributes a unique piece of
the puzzle: EMS provides the early community pulse,
OTC sales reveal population behavior, radiology
offers phenotypic confirmation, and nursing home
reports act as sentinel alarms. However, the path
forward is fraught with significant challenges related
to data interoperability, privacy, equity, and
sustainable collaboration across the Pharmacy, EMS,
Nursing, Radiology, Epidemiology, Health Security,
and Health Informatics sectors. Overcoming these
barriers requires sustained political will, investment in
public health infrastructure, and ethical governance
frameworks. As infectious disease threats continue to
evolve, building and maintaining this integrated early-
warning system is not merely a technical exercise but
a fundamental cornerstone of global health security.
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