
                                                                                                                

_________________________________________________________________________________________ 

Saudi Journal of Medicine and Public Health (SJMPH)   ISSN 2961-4368 

*Corresponding author e-mail: Kalnassar@moh.gov.sa  (Khaloud Abdullah Fahad Alnassar). 

Receive Date: 23 December 2024, Revise Date: 30 December 2024, Accept Date: 31 December 2024 

Saudi J. Med. Pub. Health Vol. 1, No. 2, pp 2174-2182 (2024) 

 

Saudi Journal of Medicine and Public Health 
https://saudijmph.com/index.php/pub  

https://doi.org/10.64483/202412609   

 

   
 

 

 

 

 

Convergent Intelligence for Pandemic Preparedness: A Narrative Review of Integrated 

Digital Biosurveillance Systems Utilizing Pre-Diagnostic Data Streams 
 

 Khaloud Abdullah Fahad Alnassar (1)  , Nora Yahya Hussain Humadi (2) , Taleb Huraymis 

Almutairi (3) , Amal Mohamad Almadani (4) , Nooh Thawab Almotiri (5) , Abdulrahman Ali Nasser 

Alharbi (6) , Ahmed Mueibid Mohammed Alharbi (7) , Abdulaziz Khalaf Ghareeb Aldhaferi (8) , Ahmed 

Mohammed Osaykir Alrashdi (9) , Fahad Nazal Khalaf Alalawi (10) , Dowahim Abdullah Aldosrai (11) , Badr 

Mohsen Samir Al-Bashri Al-Harbi (12) , Mohammed Shaya Alshmmari (13) , Maha Sultan Majed Alotaibi (14) 

 

(1) Almargab PHC- First Health Cluster-Riyadh, Ministry of Health, Saudi Arabia, 

(2) Erada Hospital and Mental Health ,Ministry of Health, Saudi Arabia, 

(3) Alyamamah Hospital, Ministry of Health, South Africa, 

(4) King Salman bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia, 

(5) Ministry of Health, Saudi Arabia, 

(6) King Fahd Central Hospital -Jazan,Ministry of Health, South Africa, 

(7) Riyadh Second Health Cluster, Primary Health Care, Ministry of Health, Saudi Arabia, 

(8) Al-Rabie Health Center – Riyadh, Ministry of Health, Saudi Arabia, 

(9) Al-Mursalat Health Center, Ministry of Health, Saudi Arabia, 

(10) King Salman Kidney Center – Riyadh, Ministry of Health, Saudi Arabia, 

(11) First Riyadh Health Cluster, Ministry of Health, Saudi Arabia, 

(12) Al-Qassim - Al-Badai'a Al-Wusta Health Center, Ministry of Health, Saudi Arabia, 

(13) King Salman Specialist Hospital, Hail, Ministry of Health, Saudi Arabia, 

(14) Albjadyah PHC, Third Health Cluster, Riyadh, Saudi Arabia, Ministry of Health, Saudi Arabia 

Abstract  
Background: The early detection of infectious disease outbreaks is a critical public health imperative. Traditional surveillance, 

reliant on confirmed laboratory reports, often introduces a critical delay. The concept of the biosurveillance continuum 

advocates for the real-time integration of pre-diagnostic data streams from across the healthcare ecosystem to provide earlier 

warning. Aim: This narrative review systematically synthesizes the literature on integrated systems that combine syndromic 

Emergency Medical Services (EMS) data, over-the-counter (OTC) pharmacy sales, radiology findings, and nursing home 

reports for the early detection of infectious disease outbreaks. Methods: A systematic search was conducted across 

PubMed/MEDLINE, CINAHL, Scopus, and IEEE Xplore for studies published between 2010-2024. A narrative synthesis was 

performed, analyzing system architectures, detection performance, and implementation challenges. Results: Each data stream 

offers unique benefits for public health monitoring. EMS data ensures geographic and temporal insight into illnesses like 

influenza-like illness (ILI). Over-the-counter (OTC) sales data reflect symptom onset across populations. NLP analysis of 

radiology reports can detect pneumonia cluster patterns before definitive diagnosis. Nursing home data provides vital 

surveillance for high-risk groups. Effective integration of these sources necessitates Health Informatics platforms for data 

aggregation and visualization, supported by robust epidemiological frameworks. Conclusion: An integrated biosurveillance 

system utilizing EMS, pharmacy, radiology, and nursing home data can improve early outbreak detection. However, challenges 

such as data standardization, interoperability, privacy, and collaboration must be addressed to maximize its effectiveness. 

Investing in these systems is crucial for pandemic preparedness. 

Keywords: biosurveillance; syndromic surveillance; outbreak detection; data integration; public health informatics. 

_____________________________________________________________________________________________________

Introduction 

The rapid emergence and global spread of 

infectious diseases, such as H1N1 influenza, Ebola, 

COVID-19, and mpox, have starkly exposed the 

limitations of traditional public health surveillance 

(Chretien et al., 2016). Conventional systems, which 

depend on laboratory-confirmed case reports from 

healthcare facilities, introduce an inherent and often 

fatal delay—the diagnostic gap—between community 

transmission and public health awareness (Cassell et 

al., 2022). This lag undermines the effectiveness of 

critical containment measures like contact tracing, 

quarantine, and resource mobilization. In response, the 

paradigm of biosurveillance has evolved, 

emphasizing the proactive, real-time collection, 

analysis, and interpretation of diverse data streams for 

early event detection and situational awareness (Dugas 

et al., 2013). Moving beyond singular data sources, the 
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modern concept is that of a biosurveillance 

continuum: an integrated system that synthesizes pre-

diagnostic, syndromic indicators from across the 

community’s health landscape to create a faster, more 

granular picture of emerging threats (Zeng et al., 

2021). 

This continuum strategically incorporates 

data from non-traditional but highly informative 

sources. Emergency Medical Services (EMS) records, 

capturing patient chief complaints and dispatch codes 

from the pre-hospital setting, offer unparalleled 

spatiotemporal granularity for syndromes like 

influenza-like illness (ILI) or gastrointestinal distress, 

often hours or days before hospital admission (Shah et 

al., 2021). Over-the-counter (OTC) pharmacy 

sales data act as a population-level behavioral 

biomarker; increased purchases of antipyretics, cough 

suppressants, or antidiarrheals serve as a direct proxy 

for symptom prevalence in the community (Andersson 

et al., 2014). Radiology reports, particularly chest 

imaging, contain rich phenotypic data. Through 

natural language processing (NLP) and, increasingly, 

artificial intelligence (AI) image analysis, clusters of 

specific findings (e.g., bilateral ground-glass 

opacities) can signal novel respiratory outbreaks 

before pathogen identification (Liang et al., 2019; 

Syrowatka et al., 2021). Nursing home and long-term 

care facility (LTCF) reports provide sentinel 

surveillance in exceptionally vulnerable, congregate 

settings where outbreaks are severe and early 

detection is paramount (Thrupp et al., 2004; Mathes et 

al., 2017). 

The power of this approach lies not in any 

single stream, but in its integration, a task that sits at 

the intersection of multiple 

disciplines. Epidemiology provides the core analytical 

framework for outbreak detection and signal 

validation. Health Security frames the imperative, 

driving investment in preparedness against biological 

threats. The pharmacy offers the OTC sales data 

pipeline. Emergency Medical Services contributes to 

the pre-hospital syndromic feed. Nursing facilitates 

the structured reporting from frontline care settings 

like LTCFs. Radiology generates the crucial imaging-

derived phenotypes. Finally, Health Informatics is the 

essential enabling discipline, providing the platforms 

for automated data aggregation, standardization, 

advanced analytics, and visualization (Khan et al., 

2018). This review aims to systematically synthesize 

the literature from 2010-2024 on integrated 

biosurveillance systems that incorporate two or more 

of these key data streams—EMS, OTC pharmacy, 

radiology, and nursing home reports. It will examine 

their technical architectures, documented performance 

in early detection, and the cross-cutting challenges of 

implementation, to inform the development of more 

resilient public health surveillance infrastructures. 

Methods 
This narrative review employed a systematic 

search strategy to ensure a comprehensive and 

reproducible identification of relevant literature. 

Searches were conducted in four electronic databases 

chosen for their coverage of biomedical, clinical, 

informatics, and engineering literature: 

PubMed/MEDLINE, CINAHL, Scopus, and IEEE 

Xplore. The search strategy combined controlled 

vocabulary (e.g., MeSH terms) and keywords related 

to four core concepts: 

(1) Biosurveillance/Surveillance ("biosurveillance", 

"syndromic surveillance", "early detection", "outbreak 

detection"); (2) Data Sources ("emergency medical 

services", "EMS", "prehospital", "over-the-counter", 

"pharmacy sales", "radiology reports", "medical 

imaging", "nursing home", "long-term care facility"); 

(3) Integration ("data integration", "multi-source", 

"interoperability", "public health informatics"); and 

(4) Infectious Disease ("infectious disease", 

"outbreak", "pandemic", "influenza", "respiratory 

infection"). Boolean operators (AND, OR) were used 

to link concepts. The search was restricted to articles 

published in English between January 1, 2010, and 

May 1, 2024, to capture the modern era of digital 

surveillance and lessons from recent pandemics. 

Inclusion Criteria encompassed: (a) peer-

reviewed original research articles, systematic 

reviews, or significant case studies; (b) focus on 

electronic or automated biosurveillance systems; (c) 

description of systems integrating at least two of the 

four target data streams (EMS, OTC pharmacy, 

radiology, nursing home); and (d) evaluation or 

discussion of the system’s application for early 

infectious disease outbreak detection. Exclusion 

Criteria were: (a) studies describing single-source 

surveillance only; (b) commentaries or editorials 

without original data or systematic analysis; (c) 

studies focused exclusively on chronic disease or non-

infectious outcomes; and (d) articles not available in 

full text. 

Given the heterogeneity in study designs, 

system architectures, and outcome measures, a formal 

meta-analysis was not feasible. Instead, a narrative 

synthesis approach was adopted (Wong et al., 2013). 

Extracted data included study design, data sources 

integrated, technical methods for integration and 

analysis, primary findings related to timeliness and 

sensitivity/specificity, and reported implementation 

challenges. Findings were organized thematically to 

construct a coherent overview of the field, focusing on 

the value of each data stream, integration paradigms, 

and cross-cutting barriers. 

The Value of Individual Data Streams in the 

Continuum 

Emergency Medical Services (EMS) Data as The 

Pre-Hospital Pulse 

EMS data, derived from electronic patient 

care reports (ePCRs) and computer-aided dispatch 

(CAD) systems, represent one of the most temporally 

and geographically precise syndromic surveillance 

sources (Shah et al., 2021). By capturing chief 

complaints (e.g., "fever," "difficulty breathing," 
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"diarrhea") at the moment of first professional medical 

contact, often in the patient’s home, EMS data can 

provide a lead time of 24-72 hours over hospital 

discharge diagnoses and 1-2 weeks over mortality data 

(Duijster et al., 2019). Studies have consistently 

demonstrated the utility of EMS syndromic indicators 

for tracking ILI activity, with strong correlations to 

confirmed influenza cases and hospitalizations 

(Hswen et al., 2017; Rosenkötter et al., 2013). For 

example, a system monitoring EMS dispatch codes for 

"sick person" and "breathing problems" in Texas 

provided reliable early warning for seasonal influenza 

peaks (Sugishita et al., 2020).  

Beyond influenza, EMS data have shown 

promise in detecting outbreaks of gastrointestinal 

illness and even novel threats; anomalous clusters of 

respiratory distress calls were noted in some regions in 

the very early stages of the COVID-19 pandemic 

(Ferraro et al., 2021). The strengths of EMS data are 

their objectivity, automation, and fine-grained 

location data, which enable hotspot mapping. 

Limitations include the need for robust syndromic 

categorization algorithms to map free-text chief 

complaints to standardized syndromes and the 

potential for confounding by non-infectious causes of 

similar symptoms (e.g., asthma, heart failure) (Ising et 

al., 2016). 

Over-the-Counter (OTC) Pharmacy Sales as A 

Population Behavioral Biomarker 

Purchases of OTC medications are a direct, 

population-level indicator of symptom mitigation 

behavior, offering a complementary signal to 

healthcare-seeking data (Andersson et al., 2014). 

Individuals often self-medicate for several days before 

seeking professional care, making OTC sales a leading 

indicator. Key product categories for surveillance 

include antipyretics/analgesics (e.g., acetaminophen, 

ibuprofen), cough/cold remedies, anti-diarrheals, and 

pediatric electrolyte solutions (Wagner et al., 2001). 

Research has established strong correlations between 

spikes in OTC sales of these items and subsequent 

increases in laboratory-confirmed cases of influenza 

and norovirus (Ramay et al., 2022; Muchaal et al., 

2015). During the 2009 H1N1 pandemic, OTC 

medication sales in Japan provided a 1-2 week lead 

time over official case reports (Yamana et al., 2017). 

The advantages of pharmacy data are their near real-

time availability (via point-of-sale systems), high 

population coverage, and ability to capture mild cases 

that never enter the healthcare system. Major 

challenges include commercial confidentiality, the 

need for partnerships with pharmacy chains or 

aggregators, and confounding by factors like sales 

promotions, seasonal purchasing patterns, and media-

driven "panic buying," which require sophisticated 

statistical filtering to isolate true outbreak signals 

(Hulth et al., 2009). 

Radiology Findings as the Phenotypic Gold Mine 

Radiology reports, particularly for chest X-

rays (CXR) and computed tomography (CT), contain 

detailed phenotypic descriptions of disease that can be 

highly specific for certain pathogens or syndromes. 

Traditionally underutilized for surveillance due to 

their unstructured text format, advances in NLP and 

AI are unlocking their potential (Liang et al., 2019). 

NLP algorithms can scan dictated reports for key 

terms and phrases indicating infectious processes 

(e.g., "consolidation," "ground-glass opacity," 

"bilateral," "multifocal"). This approach proved 

valuable during COVID-19, where NLP-based 

surveillance of "pneumonia" findings in emergency 

department radiology reports provided earlier 

community-level detection than PCR test results in 

some settings (Soltan et al., 2021). Beyond NLP, AI-

based image analysis (radiomics) can directly analyze 

imaging pixels to identify subtle, quantifiable patterns 

associated with specific infectious etiologies or 

severities (Syrowatka et al., 2021). A chest CT AI 

model, for instance, could differentiate COVID-19 

pneumonia from other causes with high accuracy, 

offering a rapid "imaging biomarker" during testing 

shortages (Mei et al., 2020). The strength of radiology 

data is its objective clinical evidence of pathology, 

providing a high-specificity signal that can validate 

softer syndromic data. Limitations include slower 

turnaround compared to EMS or pharmacy data (due 

to the need for image acquisition and interpretation), 

access to structured report data or images, and the 

challenge of normalizing findings across different 

radiologists and institutions (Kohli et al., 2017). 

Nursing Home and Long-Term Care Facility 

(LTCF) Reports 

Residents of nursing homes and LTCFs 

represent a canary-in-the-coal-mine population: they 

are older, have multiple comorbidities, live in close 

quarters, and experience severe outcomes from 

infections, making these facilities high-risk sentinel 

sites (Thrupp et al., 2004). Mandatory or voluntary 

reporting of infectious disease incidents (e.g., 

influenza-like illness, gastroenteritis, COVID-19 

cases) from LTCFs to public health authorities is a 

well-established practice. When digitized and 

automated, these reports become a powerful stream 

within the biosurveillance continuum (Mathes et al., 

2017). Early clusters in LTCFs often precede wider 

community spread, as seen starkly with COVID-19 

(McMichael et al., 2020). Automated daily reporting 

systems for symptoms and staffing shortages, as 

implemented in some jurisdictions during the 

pandemic, enabled rapid intervention and containment 

(Stone et al., 2012). The advantages are direct 

reporting from high-risk settings and the potential for 

very early, specific signals. Challenges include the 

burden of reporting on facility staff, variability in data 

quality and completeness, and ensuring rapid data 

flow from often resource-strapped facilities into public 

health systems (Hughes et al., 2020). Table 1 

summarizes the characteristics and utility of core data 

streams in the Biosurveillance continuum. 
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Table 1: Characteristics and Utility of Core Data Streams in the Biosurveillance Continuum 

Data Stream Key Indicators Lead Time 

Advantage 

Primary 

Strengths 

Key Challenges & 

Limitations 

EMS Data Chief 

complaint/diagnosis 

codes (e.g., fever, 

breathing difficulty, 

diarrhea). 

1-3 days before 

hospitalization. 

High 

spatiotemporal 

granularity; 

automated; 

captures 

community-onset 

illness. 

Requires syndromic 

categorization; non-

specific signals; can be 

confounded by chronic 

conditions. 

OTC 

Pharmacy 

Sales 

Sales volume of 

antipyretics, 

cough/cold, anti-

diarrheal medications. 

3-7 days before 

case 

confirmation. 

Captures 

mild/self-treated 

cases; near real-

time; strong 

population-level 

behavioral proxy. 

Commercially sensitive; 

confounded by 

promotions/panic 

buying; requires 

partnership with retailers. 

Radiology 

Reports 

NLP-extracted findings 

(e.g., "pneumonia," 

"ground-glass 

opacities"); AI image 

analysis. 

0-5 days 

(depends on care 

pathway). 

High clinical 

specificity; 

provides objective 

phenotypic 

evidence of 

pathology. 

Slower data flow; 

requires advanced 

NLP/AI; data access and 

standardization across 

institutions. 

Nursing 

Home/LTCF 

Reports 

Reports of ILI clusters, 

GI outbreaks, and 

confirmed cases among 

residents/staff. 

Variable; can be 

very early in 

vulnerable 

populations. 

Direct data from 

high-risk sentinel 

sites enables 

targeted 

intervention. 

Reporting burden; data 

quality/completeness 

issues, limited to a 

specific sub-population. 

Architectures for Integration 
The transformative potential of the 

biosurveillance continuum is realized only through the 

integration of disparate data streams, a task 

fundamentally dependent on Health Informatics. 

Effective integration architectures move beyond 

simple data co-location to create interoperable, 

analytic systems capable of generating actionable 

intelligence (Khan et al., 2018). 

A common model is the centralized data 

warehouse or hub, where multiple-source data are 

extracted, transformed, and loaded (ETL) into a 

common repository. Data from EMS agencies (via 

Health Level Seven [HL7] messages), pharmacy sales 

aggregators, radiology reporting systems, and LTCF 

electronic health records (EHRs) are normalized to 

common data models, such as the Public Health 

Information Network (PHIN) Vocabulary or Fast 

Healthcare Interoperability Resources (FHIR) 

standards (Dixon et al., 2011). This allows for unified 

querying and analysis. For example, BioSense (now 

the National Syndromic Surveillance Program, NSSP, 

in the U.S.) provides a platform that integrates 

emergency department, urgent care, and increasingly, 

EMS data for national syndromic surveillance (Dugas 

et al., 2013). 

More advanced architectures 

employ distributed or federated data approaches. In 

these models, data remain at their source institutions 

(preserving privacy and control) while analytic queries 

are distributed and executed locally, with only 

aggregated results or statistical signals shared. This is 

particularly relevant for sensitive data like detailed 

radiology images or proprietary pharmacy sales 

figures (Rumbold & Pierscionek, 2017). 

The Spatiotemporal Epidemiological Modeler 

(STEM) from IBM and other open-source platforms 

support such federated analytics for outbreak 

modeling (Grannis et al., 2010). 

The analytic engine itself utilizes a suite 

of statistical and machine learning (ML) algorithms to 

convert raw data into alerts. Baseline models (e.g., 

historical moving averages, regression models) 

establish expected levels for each data stream 

(Buckeridge, 2007). Anomaly detection algorithms, 

such as the Early Aberration Reporting System 

(EARS) C1-C3 methods or more sophisticated space-

time scan statistics (e.g., SaTScan), then identify 

statistically significant deviations that may represent 

an outbreak (Kleinman & Abrams, 2006). Machine 

learning models are increasingly used to weigh and 

combine signals from multiple streams, potentially 

improving the signal-to-noise ratio and predictive 

power (Zeng et al., 2021). Finally, visualization 

dashboards are critical for translating complex, multi-

dimensional data into intuitive formats for public 

health decision-makers. These dashboards often 

feature interactive maps of case clusters, time-series 

graphs of syndromic indicators, and alert logs 

(Johansson et al., 2016). 
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Performance and Impact 
Empirical evidence suggests that integrating 

multiple pre-diagnostic data streams enhances early 

outbreak detection compared to reliance on any single 

source or traditional laboratory reporting. The value is 

often additive or synergistic, with different streams 

contributing unique lead times and specificities. 

Studies evaluating multi-source systems have 

demonstrated improved timeliness. Research on a 

system combining OTC pharmacy sales, school 

absenteeism, and web search queries showed it could 

detect seasonal influenza outbreaks 1-2 weeks earlier 

than physician-based surveillance (Hulth et al., 2009). 

A system integrating EMS dispatch data with 

emergency department visits provided more 

geographically precise and timely signals for ILI than 

either source alone (Sugishita et al., 2020). During the 

COVID-19 pandemic, integrated systems that fused 

mobility data, online searches, and syndromic 

surveillance provided early indications of community 

transmission in areas with limited testing capacity 

(Menni et al., 2020). 

The integration of radiology data adds a layer 

of phenotypic validation. A study in a large healthcare 

system found that an NLP algorithm monitoring chest 

CT reports for terms consistent with viral pneumonia 

flagged a rising trend days before the first confirmed 

COVID-19 case was reported in that region, providing 

a crucial internal warning (Soltan et al., 2021). 

Similarly, nursing home outbreak reports often serve 

as the first concrete signal of community transmission 

for pathogens such as influenza or norovirus, 

triggering broader public health investigations 

(Mathes et al., 2017). 

However, measuring the true "impact" 

extends beyond statistical lead time. Key outcome 

measures include sensitivity (ability to detect true 

outbreaks), specificity (avoiding false 

alarms), positive predictive value, and ultimately, 

the effect on public health decision-making and 

outcomes (e.g., earlier intervention reducing attack 

rates). The literature indicates a common trade-off: 

highly sensitive systems (such as raw OTC sales) may 

generate many false alerts, while highly specific 

systems (such as confirmed radiology findings) may 

miss early, mild cases (Buckeridge, 2007). Intelligent 

integration aims to optimize this balance—using a 

sensitive stream like EMS data to cast a wide net and 

a specific stream like radiology or LTCF reports to 

validate and prioritize signals. 

Critical Challenges and Barriers to 

Implementation 
Despite its demonstrable promise, the 

operationalization of an effective, multi-source 

biosurveillance continuum encounters profound, 

multifaceted barriers that span technical, ethical, legal, 

and organizational domains, often impeding 

translation from proof-of-concept to sustainable 

public health infrastructure. 

Technical and Data Challenges constitute a 

primary layer of complexity. A fundamental hurdle is 

achieving interoperability and 

standardization across disparate data ecosystems. 

Biosurveillance streams originate from heterogeneous 

sources—EMS ePCRs, pharmacy POS systems, 

hospital radiology information systems (RIS), and 

LTCF electronic records—each employing different 

data formats, coding schemas (e.g., ICD-10, 

SNOMED CT, proprietary codes), and quality 

controls. Achieving true semantic interoperability, 

where a concept like "fever" or "respiratory distress" 

is consistently and accurately represented across all 

systems, requires sustained investment in common 

data models (e.g., FHIR) and meticulous mapping 

efforts (Dixon et al., 2011). Furthermore, the utility of 

early detection is directly undermined by issues 

of data latency and completeness. The lead-time 

advantage is negated if pharmacy sales data are 

batched weekly, nursing home reports are submitted 

manually days after an event manually, or radiology 

dictations await transcription. Incomplete data, 

whether due to voluntary reporting, technical failures, 

or resource constraints in source institutions, can 

introduce significant bias and weaken statistical 

signals (Cassell et al., 2022). Finally, the core of 

detection lies in algorithm development and 

validation. Crafting anomaly detection algorithms 

that are sensitive to true outbreaks while remaining 

specific enough to filter out background noise (e.g., 

seasonal influenza trends, holiday effects, reporting 

artifacts) is a complex statistical endeavor. These 

models demand continuous validation against 

confirmed outbreak data to prevent alert fatigue and 

maintain the trust of public health practitioners 

(Kleinman & Abrams, 2006). 

The Ethical, Legal, and Social 

Implications (ELSI) of integrated surveillance 

present a parallel set of critical constraints. Privacy 

and data security are paramount, as systems often 

aggregate personally identifiable information (PII) 

and precise location data from EMS runs or pharmacy 

purchases. Robust de-identification protocols and 

strict, transparent data governance frameworks 

defining access rights and usage purposes are non-

negotiable to protect individual autonomy and comply 

with regulations like GDPR and HIPAA (Rumbold & 

Pierscionek, 2017). The cybersecurity of these 

aggregated data hubs is itself a core Health 

Security concern. Concurrently, data ownership and 

commercial sensitivity create substantial barriers to 

access. OTC sales data are valuable commercial assets 

for pharmacy chains, and detailed hospital data, 

including radiology images, are often considered 

proprietary. Negotiating data-sharing agreements that 

satisfy corporate interests while providing the 

necessary granularity and timeliness for public health 

is a persistent challenge (Andersson et al., 2014). 

Perhaps most insidiously, integrated systems risk 

perpetuating equity and bias. Surveillance signals are 
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dependent on healthcare-seeking behavior and 

commercial access. Underserved communities with 

lower EMS utilization, less access to retail 

pharmacies, or poorer digital connectivity may be 

rendered "invisible" to these systems, leading to 

under-detection and a misallocation of public health 

resources. Furthermore, machine learning algorithms 

trained on historical data that reflects these existing 

disparities can encode and amplify such biases, 

leading to inequitable performance across population 

subgroups (Wedd et al., 2019). 

Ultimately, these technical and ethical 

challenges are compounded by 

significant Organizational and Sustainability 

Challenges. Success hinges on cross-sector 

collaboration among entities with differing missions, 

incentives, and cultures: public health agencies, 

private healthcare systems, EMS authorities, retail 

corporations, and LTCF operators. Forging and 

maintaining these complex, multi-stakeholder 

partnerships requires dedicated resources, clear 

governance, and a compelling demonstration of 

mutual benefit (Khan et al., 2018). Financial 

sustainability is a recurring threat; many advanced 

systems are piloted with soft grant funding, only to be 

abandoned when grants expire, as ongoing operational 

costs are rarely absorbed into core public health 

budgets (M’ikanatha et al., 2013). Finally, a 

critical workforce capacity gap exists. Public health 

departments frequently lack the specialized personnel 

with expertise in Health Informatics, data 

engineering, data science, and advanced epidemiology 

required to architect, manage, and interpret these 

complex, integrated data systems (Ye et al., 2022). A 

summary of these interconnected challenges is 

presented in Table 2. 

Table 2: Key Challenges in Implementing Integrated Biosurveillance Systems 

Challenge Domain Specific Barriers Potential Mitigation Strategies 

Technical & Data Lack of data standards/semantic 

interoperability; variable data latency and 

completeness; algorithm drift and false 

alerts. 

Adopt FHIR/PHIN standards; incentivize 

real-time data sharing agreements; 

implement ongoing model validation and 

recalibration. 

Ethical, Legal & Social Privacy risks with PII/location data; 

commercial sensitivity of 

pharmacy/hospital data; algorithmic bias 

and surveillance equity. 

Implement strong de-identification and 

role-based access controls; create data-use 

agreements with private partners; conduct 

bias audits of algorithms and data sources. 

Organizational & 

Sustainability 

Fragmented cross-sector collaboration; 

lack of sustainable funding models; 

shortage of public health informatics 

expertise. 

Establish formal data-sharing consortia 

with clear governance; advocate for core 

public health IT infrastructure funding; 

invest in workforce training and 

partnerships with academia. 

Future Directions and Conclusion 
The future of the biosurveillance continuum 

lies in more intelligent, automated, and equitable 

systems. Artificial Intelligence and Machine 

Learning will play an expanding role, not just in 

analyzing single streams (e.g., radiology AI), but in 

performing multi-modal fusion—synthesizing text, 

sales, image, and geospatial data into unified risk 

scores (Zeng et al., 2021). The concept of the "digital 

twin"—a virtual model of a city or region's health 

ecosystem that simulates outbreak spread under 

various intervention scenarios—could revolutionize 

preparedness and response planning (Elkefi & Asan, 

2022). Wearable and ambient sensor data (e.g., smart 

thermometers, home health devices) represent a new 

frontier of passive, continuous physiologic monitoring 

at the individual and community level (Menni et al., 

2020). Furthermore, global data integration through 

platforms like the World Health Organization's 

(WHO) Epidemic Intelligence from Open Sources 

(EIOS) initiative highlights the move towards a 

worldwide biosurveillance network (Nuzzo et al., 

2019). 

In conclusion, the biosurveillance 

continuum, integrating EMS, pharmacy, radiology, 

and nursing home data through robust health 

informatics platforms, represents a paradigm shift 

towards proactive public health defense. The evidence 

synthesized in this review demonstrates that such 

integration is not only feasible but also enhances the 

timeliness and situational awareness of outbreak 

detection. Each stream contributes a unique piece of 

the puzzle: EMS provides the early community pulse, 

OTC sales reveal population behavior, radiology 

offers phenotypic confirmation, and nursing home 

reports act as sentinel alarms. However, the path 

forward is fraught with significant challenges related 

to data interoperability, privacy, equity, and 

sustainable collaboration across the Pharmacy, EMS, 

Nursing, Radiology, Epidemiology, Health Security, 

and Health Informatics sectors. Overcoming these 

barriers requires sustained political will, investment in 

public health infrastructure, and ethical governance 

frameworks. As infectious disease threats continue to 

evolve, building and maintaining this integrated early-

warning system is not merely a technical exercise but 

a fundamental cornerstone of global health security. 
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