The Front Line of Defense: Summary of the Efficacy of a Novel Intranasal Vaccine Formulation against Respiratory Threats in a Forward Deployed Military Setting
Abstract
Background: Forward-deployed military troops are at high risk for acute respiratory infections (ARIs), an age-old and continuing challenge to operational readiness. Conventional intramuscular (IM) vaccines, which induce mostly systemic immunity, offer less than optimal protection at the mucosal portals of pathogen entry.
Aim: This review synthesizes current evidence of the effectiveness of novel intranasal (IN) vaccine technologies against respiratory threats, with specific focus on their application in a forward-deployed military environment.
Methods: A Systematic literature review was conducted in PubMed, Scopus, and Web of Science (2000-2024). Key search terms utilized were "intranasal vaccine," "mucosal immunity," "military personnel," "respiratory infection," "serological testing," and "PCR."
Results: Research has demonstrated that IN vaccines, particularly the live-attenuated and adenoviral vector vaccines, have a strong mucosal immune response characterized by tissue-resident memory T-cells and secretory IgA. Such a response outperforms IM vaccines in primary infection and transmission prevention. Logistically, IN delivery has numerous advantages of deployment, including simplicity of use and absence of needles. Evaluating effectiveness requires an integrated model that combines laboratory aspects (serology and PCR) with nursing activities (administration, adverse event tracking, and disease surveillance).
Conclusion: New formulations for IN vaccines possess vast potential to protect forces in the field. Their sterilizing immunity and operational benefit make them an important future asset. Success depends on an entirely integrated framework that leverages diagnostics and clinical expertise to guard force health and mission preparedness.
Full text article
References
1. Abdu Asiri, B. A., Almutairi, R. M., Alfadhel, R. M., hawsawi, N. N. A., Faqeehi, S. M., & Alshammari, E. M. (2025). Technology-Driven Nursing Interventions to Support Telehealth in Cardiac Primary Care. Saudi Journal of Medicine and Public Health, *2*(2), 137–146. https://doi.org/10.64483/jmph-67
2. Alguacil-Ramos, A. M., Muelas-Tirado, J., Garrigues-Pelufo, T. M., Portero-Alonso, A., Diez-Domingo, J., Pastor-Villalba, E., & Lluch-Rodrigo, J. A. (2016). Surveillance for adverse events following immunization (AEFI) for 7 years using a computerised vaccination system. Public health, 135, 66-74. https://doi.org/10.1016/j.puhe.2015.11.010
3. Ascough, S., Vlachantoni, I., Kalyan, M., Haijema, B. J., Wallin-Weber, S., Dijkstra-Tiekstra, M., ... & Chiu, C. (2019). Local and systemic immunity against respiratory syncytial virus induced by a novel intranasal vaccine. A randomized, double-blind, placebo-controlled clinical trial. American journal of respiratory and critical care medicine, 200(4), 481-492. https://doi.org/10.1164/rccm.201810-1921OC
4. Baguelin, M., Flasche, S., Camacho, A., Demiris, N., Miller, E., & Edmunds, W. J. (2013). Assessing optimal target populations for influenza vaccination programmes: an evidence synthesis and modelling study. PLoS medicine, 10(10), e1001527. https://doi.org/10.1371/journal.pmed.1001527
5. Bezbaruah, R., Chavda, V. P., Nongrang, L., Alom, S., Deka, K., Kalita, T., ... & Vora, L. (2022). Nanoparticle-based delivery systems for vaccines. Vaccines, 10(11), 1946. https://doi.org/10.3390/vaccines10111946
6. Belyakov, I. M., & Ahlers, J. D. (2009). What role does the route of immunization play in the generation of protective immunity against mucosal pathogens?. The Journal of immunology, 183(11), 6883-6892.
7. Beshbishy, A. M. (2024). Advancements in Vaccination Tracking and Delivery Systems through Health Informatics: A Review of Digital Innovations and COVID-19 Impact. Saudi Journal of Medicine and Public Health, *1*(1), 16 – 26 . https://doi.org/10.64483/jmph-16
8. Biselli, R., Nisini, R., Lista, F., Autore, A., Lastilla, M., De Lorenzo, G., ... & D’Amelio, R. (2022). A historical review of military medical strategies for fighting infectious diseases: From battlefields to global health. Biomedicines, 10(8), 2050. https://doi.org/10.3390/biomedicines10082050
9. Blackbourne, L. H., Baer, D. G., Eastridge, B. J., Renz, E. M., Chung, K. K., DuBose, J., ... & Holcomb, J. B. (2012). Military medical revolution: Deployed hospital and: en route: care. Journal of Trauma and Acute Care Surgery, 73(6), S378-S387. DOI: 10.1097/TA.0b013e3182754900
10. Brekke, K., Lind, A., Holm-Hansen, C., Haugen, I. L., Sørensen, B., Sommerfelt, M., & Kvale, D. (2014). Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PloS one, 9(11), e112556. https://doi.org/10.1371/journal.pone.0112556
11. Ceglia, S., Berthelette, A., Howley, K., Li, Y., Mortzfeld, B., Bhattarai, S. K., ... & Reboldi, A. (2023). An epithelial cell-derived metabolite tunes immunoglobulin A secretion by gut-resident plasma cells. Nature immunology, 24(3), 531-544. https://doi.org/10.1038/s41590-022-01413-w
12. Chen, J., Qin, Z., & Jia, Z. (2024). The application status of sequencing technology in global respiratory infectious disease diagnosis. Infection, 52(6), 2169-2181. https://doi.org/10.1007/s15010-024-02360-4
13. Cheon, I. S., Son, Y. M., & Sun, J. (2023). Tissue‐resident memory T cells and lung immunopathology. Immunological reviews, 316(1), 63-83. https://doi.org/10.1111/imr.13201
14. de Silva, T. I., Gould, V., Mohammed, N. I., Cope, A., Meijer, A., Zutt, I., ... & Tregoning, J. S. (2017). Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity. Journal of immunological methods, 449, 1-6. https://doi.org/10.1016/j.jim.2017.06.008
15. Fallatah, A. R., Hawsawi, A. M. T., Makrami, R. A. H., Makrami, M. A. H., Jaber, S. A. H., Alanazi, K. S. sweet, … Al-Dosari, N. M. H. (2024). The Effect of Climate Change on Nursing: Climate Health Emergencies Preparedness Amidst Extreme Weather Conditions. Saudi Journal of Medicine and Public Health, *1*(1), 123–130. https://doi.org/10.64483/jmph-54
16. Feng, Y., Shi, J., Liu, J., Yuan, Z., & Gao, S. (2025). Advancing Food Safety Surveillance: Rapid and Sensitive Biosensing Technologies for Foodborne Pathogenic Bacteria. Foods, 14(15), 2654. https://doi.org/10.3390/foods14152654
17. Grabenstein, J. D., & Winkenwerder Jr, W. (2003). US military smallpox vaccination program experience. Jama, 289(24), 3278-3282. doi:10.1001/jama.289.24.3278
18. Hazazi, Y. O. (2025). Strengthening Postpartum Depression Screening and Treatment within Primary Healthcare Centers in Riyadh 1st Cluster. Saudi Journal of Medicine and Public Health, *2*(2), 105–113. https://doi.org/10.64483/jmph-56
19. Heaney, C. D., Hempel, H., DeRosa, K. L., Pinto, L. A., & Mantis, N. J. (2024). Clinical assessment of SARS-CoV-2 antibodies in oral fluids following infection and vaccination. Clinical chemistry, 70(4), 589-596. https://doi.org/10.1093/clinchem/hvad169
20. Kiyono, H., & Fukuyama, S. (2004). NALT-versus Peyer's-patch-mediated mucosal immunity. Nature reviews immunology, 4(9), 699-710. https://doi.org/10.1038/nri1439
21. Korzeniewski, K., Nitsch-Osuch, A., Konior, M., & Lass, A. (2015). Respiratory tract infections in the military environment. Respiratory physiology & neurobiology, 209, 76-80. https://doi.org/10.1016/j.resp.2014.09.016
22. Lalani, T., Lee, T. K., Laing, E. D., Ritter, A., Cooper, E., Lee, M., ... & Kronmann, K. C. (2021, February). SARS-CoV-2 infections and serologic responses among military personnel deployed on the USNS COMFORT to New York City during the COVID-19 pandemic. In Open forum infectious diseases (Vol. 8, No. 2, p. ofaa654). US: Oxford University Press. https://doi.org/10.1093/ofid/ofaa654
23. Ledesma-Feliciano, C., Chapman, R., Hooper, J. W., Elma, K., Zehrung, D., Brennan, M. B., & Spiegel, E. K. (2023). Improved DNA vaccine delivery with needle-free injection systems. Vaccines, 11(2), 280. https://doi.org/10.3390/vaccines11020280
24. Liang, X., Zhou, J., Wang, M., Wang, J., Song, H., Xu, Y., & Li, Y. (2024). Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence, 15(1), 2435373. https://doi.org/10.1080/21505594.2024.2435373
25. Lund, F. E., & Randall, T. D. (2021). Scent of a vaccine. Science, 373(6553), 397-399. https://doi.org/10.1126/science.abg9857
26. Madkhali, A. M., Bouri, H. A., Alotaibi, F. O. E., ALMUTAIRI, A. M. M., Albalawi, T. suliman, Alotaibi, G. S., … Alotaibi, A. S. (2024). Potential Health Implications of Fifth Generation (5G) Wireless Communication Technology: A Review of Emerging Biological and Epidemiological Concerns. Saudi Journal of Medicine and Public Health, *1*(1), 94–105. https://doi.org/10.64483/jmph-53
27. Mestecky, J., Strober, W., Russell, M. W., Cheroutre, H., Lambrecht, B. N., & Kelsall, B. L. (Eds.). (2015). Mucosal immunology. Academic Press.
28. Mutsch, M., Zhou, W., Rhodes, P., Bopp, M., Chen, R. T., Linder, T., ... & Steffen, R. (2004). Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. New England journal of medicine, 350(9), 896-903. DOI: 10.1056/NEJMoa030595
29. Nguyen, K. G., Mantooth, S. M., Vrabel, M. R., & Zaharoff, D. A. (2022). Intranasal delivery of thermostable subunit vaccine for cross-reactive mucosal and systemic antibody responses against SARS-CoV-2. Frontiers in Immunology, 13, 858904. https://doi.org/10.3389/fimmu.2022.858904
30. Plotkin, S. A. (2023). Recent updates on correlates of vaccine-induced protection. Frontiers in Immunology, 13, 1081107. https://doi.org/10.3389/fimmu.2022.1081107
31. Sanchez, J. L., Cooper, M. J., Myers, C. A., Cummings, J. F., Vest, K. G., Russell, K. L., ... & Gaydos, C. A. (2015). Respiratory infections in the US military: recent experience and control. Clinical microbiology reviews, 28(3), 743-800. https://doi.org/10.1128/cmr.00039-14
32. Schenkel, J. M., & Masopust, D. (2014). Tissue-resident memory T cells. Immunity, 41(6), 886-897. https://doi.org/10.1016/j.immuni.2014.12.007
33. Trombetta, C. M., & Montomoli, E. (2016). Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert review of vaccines, 15(8), 967-976. https://doi.org/10.1586/14760584.2016.1164046
34. Tsoi, S. K., Smeesters, P. R., Frost, H. R., Licciardi, P., & Steer, A. C. (2015). Correlates of Protection for M Protein‐Based Vaccines against Group A Streptococcus. Journal of immunology research, 2015(1), 167089. https://doi.org/10.1155/2015/167089
35. Wang, Y., Wei, X., Liu, Y., Li, S., Pan, W., Dai, J., & Yang, Z. (2024). Towards broad-spectrum protection: the development and challenges of combined respiratory virus vaccines. Frontiers in Cellular and Infection Microbiology, 14, 1412478. https://doi.org/10.3389/fcimb.2024.1412478
36. Ye, Z. W., Ong, C. P., Tang, K., Fan, Y., Luo, C., Zhou, R., ... & Jin, D. Y. (2022). Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cellular & molecular immunology, 19(5), 588-601. https://doi.org/10.1038/s41423-022-00855-4
37. Zhao, L., Seth, A., & Wibowo, N. (2022). Nanoparticle-based vaccines. Vaccine, 40(12), 1641-1651.
Authors
Copyright (c) 2024 Masheal Masoud Alyami, Haila Hussain Alshaiban, Maryam Mohammed Alnaji, Maryam Ali Yahya Jarah, Afiyah Mousa Ahmed Tawashi, Hanan Mohammed Ahmed Sharahili, Amany Modhaya Ali Omair, Shaima Jubran Alyami, Amani Ageel Muhanna, Ghrop Yhia Ahmad Mobtti, Meshael Suliman Saeed Alotaibi, Nujood Ali saad Al Shahrani, Joud Abdullah Aldossary, Alanoud Ali Siddiq

This work is licensed under a Creative Commons Attribution 4.0 International License.