Mass Spectrometry in the Clinical Laboratory: Beyond Toxicology to Endocrinology and Microbiology
Abstract
Background: The clinical laboratory has witnessed a paradigm shift with the introduction of mass spectrometry (MS) into its activities, extending its role way beyond the traditional field of toxicology.
Aim: This review comprehensively discusses the revolutionizing impact of tandem mass spectrometry (MS/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS on the diagnosis and management of human disease, particularly in endocrinology and microbiology.
Methods: Synthesis of concepts, applications, and relative advantages of these MS methods from the current literature between 2015 and 2024 was reviewed.
Results: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) emerged as the gold standard in endocrinology with improved specificity for steroid, thyroid hormone, and vitamin measurement, thereby enabling accurate diagnosis of complex disorders. Meanwhile, MALDI-TOF MS has revolutionized clinical microbiology by providing quick, accurate, and cost-effective microbial identification, with an appreciable shortening of the time to effective antimicrobial therapy. Further, MS/MS remains the basis of newborn screening for congenital errors of metabolism. Despite challenges like standardization and cost, newer directions like mass spectrometry imaging and ambient ionization techniques promise further advancements.
Conclusion: The findings verify that MS/MS and MALDI-TOF MS lead the path of the modern clinical laboratory's commitment to deliver precise, individualized, and prompt patient treatment.
Full text article
References
Aljehani, M. R., & Alhayek, A. A. (2024). Renal Function Assessment: Core Responsibilities of Clinical Pathologists and Laboratory Technicians in Diagnostic Evaluation. Saudi Journal of Medicine and Public Health, 1(1), 65-74. https://doi.org/10.64483/jmph-39
Angeletti, S. (2017). Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of microbiological methods, 138, 20-29. https://doi.org/10.1016/j.mimet.2016.09.003
Annesley, T. (2009). Mass spectrometry in the clinical laboratory: how have we done, and where do we need to be?. Clinical chemistry, 55(6), 1236-1239. https://doi.org/10.1373/clinchem.2009.127522
Asiri, B. A. A., Almutairi, R. M., Alfadhel, R. M., Faqeehi, S. M., & Alshammari, E. M. (2025). Technology-Driven Nursing Interventions to Support Telehealth in Cardiac Primary Care. Saudi Journal of Medicine and Public Health, 2(2), 137-146. https://doi.org/10.64483/jmph-67
Balog, J., Sasi-Szabó, L., Kinross, J., Lewis, M. R., Muirhead, L. J., Veselkov, K., ... & Takáts, Z. (2013). Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Science translational medicine, 5(194), 194ra93-194ra93. https://doi.org/10.1126/scitranslmed.3005623
Chace, D. H., Kalas, T. A., & Naylor, E. W. (2002). The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annual review of genomics and human genetics, 3(1), 17-45. https://doi.org/10.1146/annurev.genom.3.022502.103213
Chen, X. F., Hou, X., Xiao, M., Zhang, L., Cheng, J. W., Zhou, M. L., ... & Hsueh, P. R. (2021). Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis for the identification of pathogenic microorganisms: a review. Microorganisms, 9(7), 1536. https://doi.org/10.3390/microorganisms9071536
Clark, A. E., Kaleta, E. J., Arora, A., & Wolk, D. M. (2013). Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clinical microbiology reviews, 26(3), 547-603. https://doi.org/10.1128/cmr.00072-12
Drabovich, A. P., Saraon, P., Drabovich, M., Karakosta, T. D., Dimitromanolakis, A., Hyndman, M. E., ... & Diamandis, E. P. (2019). Multi-omics biomarker pipeline reveals elevated levels of protein-glutamine gamma-glutamyltransferase 4 in seminal plasma of prostate cancer patients*[S]. Molecular & Cellular Proteomics, 18(9), 1807-1823. https://doi.org/10.1074/mcp.RA119.001612
Eisenhofer, G., Peitzsch, M., Kaden, D., Langton, K., Pamporaki, C., Masjkur, J., ... & Bornstein, S. R. (2017). Reference intervals for plasma concentrations of adrenal steroids measured by LC-MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clinica Chimica Acta, 470, 115-124. https://doi.org/10.1016/j.cca.2017.05.002
Florio, W., Baldeschi, L., Rizzato, C., Tavanti, A., Ghelardi, E., & Lupetti, A. (2020). Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: an expanding area. Frontiers in cellular and infection microbiology, 10, 572909. https://doi.org/10.3389/fcimb.2020.572909
Fung, A. W., Sugumar, V., Ren, A. H., & Kulasingam, V. (2020). Emerging role of clinical mass spectrometry in pathology. Journal of clinical pathology, 73(2), 61-69. https://doi.org/10.1136/jclinpath-2019-206269
Fuss, C. T., Brohm, K., Kurlbaum, M., Hannemann, A., Kendl, S., Fassnacht, M., ... & Kroiss, M. (2021). Confirmatory testing of primary aldosteronism with saline infusion test and LC-MS/MS. European Journal of Endocrinology, 184(1), 167-178. https://doi.org/10.1530/EJE-20-0073
Grebe, S. K., & Singh, R. J. (2011). LC-MS/MS in the clinical laboratory–where to from here?. The Clinical biochemist reviews, 32(1), 5. https://pubmed.ncbi.nlm.nih.gov/21451775/
Ho, C. S., Lam, C. W. K., Chan, M. H., Cheung, R. C. K., Law, L. K., Lit, L. C., ... & Tai, H. (2003). Electrospray ionisation mass spectrometry: principles and clinical applications. The Clinical Biochemist Reviews, 24(1), 3. https://pubmed.ncbi.nlm.nih.gov/18568044/
Hu, Z., Zhang, J., Chen, Z., Jin, Z., Leng, P., Zhou, J., & Xie, X. (2019). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification and antifungal susceptibility analysis of Candida species isolated from patients with invasive yeast infections in five university hospitals. Brazilian Journal of Microbiology, 50(1), 99-105. https://doi.org/10.1007/s42770-018-0027-0
Jannetto, P. J., & Fitzgerald, R. L. (2016). Effective use of mass spectrometry in the clinical laboratory. Clinical chemistry, 62(1), 92-98. https://doi.org/10.1373/clinchem.2015.248146
Janzen, N., Peter, M., Sander, S., Steuerwald, U., Terhardt, M., Holtkamp, U., & Sander, J. (2007). Newborn screening for congenital adrenal hyperplasia: additional steroid profile using liquid chromatography-tandem mass spectrometry. The Journal of Clinical Endocrinology & Metabolism, 92(7), 2581-2589. https://doi.org/10.1210/jc.2006-2890
Kaufmann, A., Widmer, M., Maden, K., Butcher, P., & Walker, S. (2021). High resolution mass spectrometry-based detection and quantification of β-agonists at relevant trace levels in a variety of animal-based food matrices. Food Additives & Contaminants: Part A, 38(8), 1350-1363. https://doi.org/10.1080/19440049.2021.1922759
Keevil, B. G. (2016). LC–MS/MS analysis of steroids in the clinical laboratory. Clinical biochemistry, 49(13-14), 989-997. https://doi.org/10.1016/j.clinbiochem.2016.04.009
Kushchayeva, Y., Soldin, S. J., Stolze, B., Yu, X., Auh, S., & Lin, T. C. (2019). Comparison of thyroid panel by immunoassay and liquid chromatography-tandem mass spectrometry during transition from euthyroid to hyperthyroid state. Annals Thyroid Res, 5(1), 178-184.
Lai, J. K., Lucas, R. M., Banks, E., Ponsonby, A. L., & Ausimmune Investigator Group. (2012). Variability in vitamin D assays impairs clinical assessment of vitamin D status. Internal medicine journal, 42(1), 43-50. https://doi.org/10.1111/j.1445-5994.2011.02471.x
Maurer, H. H., & Meyer, M. R. (2016). High-resolution mass spectrometry in toxicology: current status and future perspectives. Archives of toxicology, 90(9), 2161-2172. https://doi.org/10.1007/s00204-016-1764-1
McHugh, D., Cameron, C. A., Abdenur, J. E., Abdulrahman, M., Adair, O., Al Nuaimi, S. A., ... & McNeilly, B. (2011). Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genetics in Medicine, 13(3), 230-254. https://doi.org/10.1097/GIM.0b013e31820d5e67
Ota, Y., Furuhashi, K., Nagao, Y., Nanba, T., Yamanaka, K., Ishikawa, J., ... & Maekawa, M. (2019). Detection of extended-spectrum β-lactamases producing Enterobacteriaceae using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based MBT STAR-BL software module with β-lactamase inhibition assay depends on the bacterial strains. Journal of Microbiological Methods, 167, 105734. https://doi.org/10.1016/j.mimet.2019.105734
Palmquist, K. B., Truver, M. T., Shoff, E. N., Krotulski, A. J., & Swortwood, M. J. (2023). Review of analytical methods for screening and quantification of fentanyl analogs and novel synthetic opioids in biological specimens. Journal of forensic sciences, 68(5), 1643-1661. https://doi.org/10.1111/1556-4029.15282
Patel, R. (2015). MALDI-TOF MS for the diagnosis of infectious diseases. Clinical chemistry, 61(1), 100-111. https://doi.org/10.1373/clinchem.2014.221770
Peitzsch, M., Dekkers, T., Haase, M., Sweep, F. C., Quack, I., Antoch, G., ... & Eisenhofer, G. (2015). An LC–MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. The Journal of steroid biochemistry and molecular biology, 145, 75-84. https://doi.org/10.1016/j.jsbmb.2014.10.006
Rashed, M. S. (2001). Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. Journal of Chromatography B: Biomedical Sciences and Applications, 758(1), 27-48. https://doi.org/10.1016/S0378-4347(01)00100-1
Rauh, M. (2012). LC–MS/MS for protein and peptide quantification in clinical chemistry. Journal of Chromatography B, 883, 59-67. https://doi.org/10.1016/j.jchromb.2011.09.030
Rowen, T. S., Davis, S. R., Parish, S., Simon, J., & Vignozzi, L. (2020). Methodological challenges in studying testosterone therapies for hypoactive sexual desire disorder in women. The Journal of Sexual Medicine, 17(4), 585-594. https://doi.org/10.1016/j.jsxm.2019.12.013
Schmidt, J. L., Castellanos-Brown, K., Childress, S., Bonhomme, N., Oktay, J. S., Terry, S. F., ... & Greene, C. (2012). The impact of false-positive newborn screening results on families: a qualitative study. Genetics in Medicine, 14(1), 76-80. https://doi.org/10.1038/gim.2011.5
Shah, I., Mansour, M., Jobe, S., Salih, E., Naughton, D., & Salman Ashraf, S. (2021). A non-invasive hair test to determine vitamin D3 levels. Molecules, 26(11), 3269. https://doi.org/10.3390/molecules26113269
Singhal, N., Kumar, M., Kanaujia, P. K., & Virdi, J. S. (2015). MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in microbiology, 6, 791. https://doi.org/10.3389/fmicb.2015.00791
Stanczyk, F. Z., & Clarke, N. J. (2010). Advantages and challenges of mass spectrometry assays for steroid hormones. The Journal of steroid biochemistry and molecular biology, 121(3-5), 491-495. https://doi.org/10.1016/j.jsbmb.2010.05.001
Snyder, D. T., Pulliam, C. J., Ouyang, Z., & Cooks, R. G. (2016). Miniature and fieldable mass spectrometers: recent advances. Analytical chemistry, 88(1), 2-29. https://doi.org/10.1021/acs.analchem.5b03070
Taylor, A. E., Keevil, B., & Huhtaniemi, I. T. (2015). Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. European journal of endocrinology, 173(2), D1-D12. https://doi.org/10.1530/EJE-15-0338
Therrell, B. L., Padilla, C. D., Loeber, J. G., Kneisser, I., Saadallah, A., Borrajo, G. J., & Adams, J. (2015, April). Current status of newborn screening worldwide: 2015. In Seminars in perinatology (Vol. 39, No. 3, pp. 171-187). WB Saunders. https://doi.org/10.1053/j.semperi.2015.03.002
Thomas, S. N., French, D., Jannetto, P. J., Rappold, B. A., & Clarke, W. A. (2022). Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nature Reviews Methods Primers, 2(1), 96. https://doi.org/10.1038/s43586-022-00175-x
Timbrook, T. T., Morton, J. B., McConeghy, K. W., Caffrey, A. R., Mylonakis, E., & LaPlante, K. L. (2016). The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clinical Infectious Diseases, ciw649. https://doi.org/10.1093/cid/ciw649
Verroken, A., Defourny, L., Lechgar, L., Magnette, A., Delmée, M., & Glupczynski, Y. (2015). Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. European journal of clinical microbiology & infectious diseases, 34(2), 405-413. https://doi.org/10.1007/s10096-014-2242-4
Wang, Z., Wang, H., Peng, Y., Chen, F., Zhao, L., Li, X., ... & Guo, W. (2020). A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay to profile 20 plasma steroids in endocrine disorders. Clinical Chemistry and Laboratory Medicine (CCLM), 58(9), 1477-1487. https://doi.org/10.1515/cclm-2019-0869
Authors
Copyright (c) 2025 Ali Saeed Abdullah Alzahrani, Hani Awied Aied Alharbi, Ali Abdullah Mohammed Alsaab, Yasir Ali Muhammad Al-Zahrani, Emad Ali Muhsin Alattas, Ahmed Abdullah Orepi, Ali Abdullah Alzahrani, Majed Abdulrahman Alrashidi, Mansour Butayhan Al Mabdi, Ali Ahmed Alomari Alzhrani

This work is licensed under a Creative Commons Attribution 4.0 International License.
