The Economics of Accuracy: A Narrative Review of AI in Dental Radiology and its Impact on Laboratory Referral Patterns and Systemic Costs

Amnah Aqeel Alrashidi (1) , Ali Ahmed Hakami (2) , Hassan Ibrahim Mashragi (3) , Ahmed Atiah Ali Dawshi (2) , Mohammed Abdulrhman Jaber Aljabri (4) , Othman Mohammed Almousa (5) , Mashael kamal BInsaeed (6) , Omar Abdullah M Alanazi (7) , Rami Redha Abdulrasheed Ambon (8) , Jaber Mufareh Ali Al Huraysi (8) , Dalia Sami Dabash (8) , Almontaserbella Abdulhadi Suror (8)
(1) Alqassim, Ministry of Health, Saudi Arabia,
(2) King Fahad Hospital, Ministry of Health, Saudi Arabia,
(3) Abuarish general Hospital, Ministry of Health, Saudi Arabia,
(4) Jazan Health Cluster, Ministry of Health, Saudi Arabia,
(5) Badr Health Center 3 First Health Cluster at Ministry of Health, Saudi Arabia,
(6) Riyadh specialized dental centre, Ministry of Health, Saudi Arabia,
(7) King Salman Specialist Hospital, Hail, Ministry of Health, Saudi Arabia,
(8) King Abdullah Medical Complex, Ministry of Health, Saudi Arabia

Abstract

Background: Artificial intelligence (AI), particularly deep learning, is rapidly transforming dental radiology, demonstrating high accuracy in detecting pathologies like caries, periodontitis, and periapical lesions from panoramic and periapical radiographs. While diagnostic performance is well-studied, the economic implications and downstream effects on healthcare resource utilization remain poorly quantified. Aim: This narrative review aims to synthesize current evidence on the health economics of implementing AI diagnostic support in dental radiology, with a specific focus on modeling its impact on laboratory referral patterns (biopsies, microbiological cultures) and specialist consultations. Methods: A systematic search of literature (2010-2024) was conducted in PubMed, IEEE Xplore, Scopus, and health economics databases. Thematic analysis integrated findings from clinical validation studies, early economic models, and healthcare utilization research. Results: AI demonstrates significant potential to reduce false-positive referrals for benign conditions, decreasing unnecessary biopsies and specialist visits. Conversely, by improving sensitivity for early-stage disease, it may increase appropriate referrals for pre-malignant lesions and complex cases, shifting costs earlier in the care pathway. The economic viability hinges on implementation costs (software, integration), avoided misdiagnosis costs, and the value of earlier intervention. Current evidence is largely modeled, with real-world longitudinal data scarce. Conclusion: AI in dental radiology promises a shift towards more accurate, cost-effective triage. Realizing net economic benefit requires integrated systems that translate AI findings directly into referral decisions, coupled with standardized economic evaluations that capture long-term systemic savings from prevented disease progression.

Full text article

Generated from XML file

References

1. Aminoshariae, A., Kulild, J., & Nagendrababu, V. (2021). Artificial intelligence in endodontics: current applications and future directions. Journal of endodontics, 47(9), 1352-1357. https://doi.org/10.1016/j.joen.2021.06.003

2. Areia, M., Mori, Y., Correale, L., Repici, A., Bretthauer, M., Sharma, P., ... & Hassan, C. (2022). Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. The Lancet Digital Health, 4(6), e436-e444. https://doi.org/10.1016/S2589-7500(22)00042-5

3. Brandão, S. M. G., Brunner-La Rocca, H. P., De Lima, A. C. P., & Bocchi, E. A. (2023). A review of cost-effectiveness analysis: From theory to clinical practice. Medicine, 102(42), e35614. DOI: 10.1097/MD.0000000000035614

4. De Angelis, F., Pranno, N., Franchina, A., Di Carlo, S., Brauner, E., Ferri, A., ... & Stefanelli, L. V. (2022). Artificial intelligence: a new diagnostic software in dentistry: a preliminary performance diagnostic study. International journal of environmental research and public health, 19(3), 1728. https://doi.org/10.3390/ijerph19031728

5. Dwivedi, P., Lohiya, A., Bahuguna, P., Singh, A., Sulaiman, D., Singh, M. K., ... & Rizwan, S. A. (2023). Cost-effectiveness of population-based screening for oral cancer in India: an economic modelling study. The Lancet Regional Health-Southeast Asia, 16. https://doi.org/10.1016/j.lansea.2023.100224

6. Ekert, T., Krois, J., Meinhold, L., Elhennawy, K., Emara, R., Golla, T., & Schwendicke, F. (2019). Deep learning for the radiographic detection of apical lesions. Journal of endodontics, 45(7), 917-922. https://doi.org/10.1016/j.joen.2019.03.016

7. Fatima, A., Shafi, I., Afzal, H., Díez, I. D. L. T., Lourdes, D. R. S. M., Breñosa, J., ... & Ashraf, I. (2022, October). Advancements in dentistry with artificial intelligence: current clinical applications and future perspectives. In Healthcare (Vol. 10, No. 11, p. 2188). MDPI. https://doi.org/10.3390/healthcare10112188

8. Giansanti, D. (2022, September). The regulation of artificial intelligence in digital radiology in the scientific literature: a narrative review of reviews. In Healthcare (Vol. 10, No. 10, p. 1824). MDPI. https://doi.org/10.3390/healthcare10101824

9. Hardy, M., & Harvey, H. (2020). Artificial intelligence in diagnostic imaging: impact on the radiography profession. The British journal of radiology, 93(1108), 20190840. https://doi.org/10.1259/bjr.20190840

10. Harmon, S. A., Tuncer, S., Sanford, T., Choyke, P. L., & Türkbey, B. (2019). Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagnostic and Interventional Radiology, 25(3), 183. https://doi.org/10.5152/dir.2019.19125

11. Jiang, L., Chen, D., Cao, Z., Wu, F., Zhu, H., & Zhu, F. (2022). A two-stage deep learning architecture for radiographic staging of periodontal bone loss. BMC Oral Health, 22(1), 106. https://doi.org/10.1186/s12903-022-02119-z

12. Joda, T., Bornstein, M. M., Jung, R. E., Ferrari, M., Waltimo, T., & Zitzmann, N. U. (2020). Recent trends and future direction of dental research in the digital era. International journal of environmental research and public health, 17(6), 1987. https://doi.org/10.3390/ijerph17061987

13. Kim, J. H. (2019). Imaging informatics: A new horizon for radiologyin the era of artificial intelligence, Big Data, and data science. Journal of the Korean Society of Radiology, 80(2), 176-201. https://doi.org/10.3348/jksr.2019.80.2.176

14. Krois, J., Ekert, T., Meinhold, L., Golla, T., Kharbot, B., Wittemeier, A., ... & Schwendicke, F. (2019). Deep learning for the radiographic detection of periodontal bone loss. Scientific reports, 9(1), 8495. https://doi.org/10.1038/s41598-019-44839-3

15. Lee, J. H., Kim, D. H., Jeong, S. N., & Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of dentistry, 77, 106-111. https://doi.org/10.1016/j.jdent.2018.07.015

16. Monterubbianesi, R., Tosco, V., Vitiello, F., Orilisi, G., Fraccastoro, F., Putignano, A., & Orsini, G. (2022). Augmented, virtual and mixed reality in dentistry: a narrative review on the existing platforms and future challenges. Applied Sciences, 12(2), 877. https://doi.org/10.3390/app12020877

17. Morrison, S. L., Dukhovny, D., Chan, R. P., Chiang, M. F., & Campbell, J. P. (2022). Cost-effectiveness of artificial intelligence–based retinopathy of prematurity screening. JAMA ophthalmology, 140(4), 401-409. doi:10.1001/jamaophthalmol.2022.0223

18. Pesapane, F., Volonté, C., Codari, M., & Sardanelli, F. (2018). Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights into imaging, 9(5), 745-753. https://doi.org/10.1007/s13244-018-0645-y

19. Ryu, J., Lee, D. M., Jung, Y. H., Kwon, O., Park, S., Hwang, J., & Lee, J. Y. (2023). Automated detection of periodontal bone loss using deep learning and panoramic radiographs: a convolutional neural network approach. Applied Sciences, 13(9), 5261. https://doi.org/10.3390/app13095261

20. Schwendicke, F., Golla, T., Dreher, M., & Krois, J. (2019). Convolutional neural networks for dental image diagnostics: A scoping review. Journal of dentistry, 91, 103226. https://doi.org/10.1016/j.jdent.2019.103226

21. Schwendicke, F. A., Samek, W., & Krois, J. (2020). Artificial intelligence in dentistry: chances and challenges. Journal of dental research, 99(7), 769-774. https://doi.org/10.1177/0022034520915714

22. Shafi, I., Fatima, A., Afzal, H., Díez, I. D. L. T., Lipari, V., Breñosa, J., & Ashraf, I. (2023). A comprehensive review of recent advances in artificial intelligence for dentistry e-health. Diagnostics, 13(13), 2196. https://doi.org/10.3390/diagnostics13132196

23. Shen, M., Zou, Z., Bao, H., Fairley, C. K., Canfell, K., Ong, J. J., ... & Zhang, L. (2023). Cost-effectiveness of artificial intelligence-assisted liquid-based cytology testing for cervical cancer screening in China. The Lancet Regional Health–Western Pacific, 34. https://doi.org/10.1016/j.lanwpc.2023.100726

24. Sur, J., Bose, S., Khan, F., Dewangan, D., Sawriya, E., & Roul, A. (2020). Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging science in dentistry, 50(3), 193. https://doi.org/10.5624/isd.2020.50.3.193

25. Tandon, D., Rajawat, J., & Banerjee, M. (2020). Present and future of artificial intelligence in dentistry. Journal of oral biology and craniofacial research, 10(4), 391-396. https://doi.org/10.1016/j.jobcr.2020.07.015

26. Tarhini, A., Harfouche, A., & De Marco, M. (2022). Artificial intelligence-based digital transformation for sustainable societies: the prevailing effect of COVID-19 crises. Pacific Asia Journal of the Association for Information Systems, 14(2), 1. DOI: 10.17705/1pais.14201

27. Thurzo, A., Urbanova, W., Novak, B., Czako, L., Siebert, T., Stano, P., ... & Varga, I. (2022, July). Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. In Healthcare (Vol. 10, No. 7, p. 1269). MDPI. https://doi.org/10.3390/healthcare10071269

28. van Assen, M., Muscogiuri, G., Caruso, D., Lee, S. J., Laghi, A., & De Cecco, C. N. (2020). Artificial intelligence in cardiac radiology. La radiologia medica, 125(11), 1186-1199. https://doi.org/10.1007/s11547-020-01277-w

29. Wellnhofer, E. (2022). Real-world and regulatory perspectives of artificial intelligence in cardiovascular imaging. Frontiers in cardiovascular medicine, 9, 890809. https://doi.org/10.3389/fcvm.2022.890809

30. White, S. C., & Pharoah, M. J. (2014). Oral radiology-E-Book: Principles and interpretation. Elsevier Health Sciences.

31. Xu, J., Zeng, B., Egger, J., Wang, C., Smedby, Ö., Jiang, X., & Chen, X. (2022). A review on AI-based medical image computing in head and neck surgery. Physics in Medicine & Biology, 67(17), 17TR01. DOI 10.1088/1361-6560/ac840f

Authors

Amnah Aqeel Alrashidi
Bnnados2@hotmail.com (Primary Contact)
Ali Ahmed Hakami
Hassan Ibrahim Mashragi
Ahmed Atiah Ali Dawshi
Mohammed Abdulrhman Jaber Aljabri
Othman Mohammed Almousa
Mashael kamal BInsaeed
Omar Abdullah M Alanazi
Rami Redha Abdulrasheed Ambon
Jaber Mufareh Ali Al Huraysi
Dalia Sami Dabash
Almontaserbella Abdulhadi Suror
Alrashidi, A. A., Hakami, A. A., Mashragi, H. I., Dawshi, A. A. A., Aljabri, M. A. J., Almousa, O. M., … Suror, A. A. (2024). The Economics of Accuracy: A Narrative Review of AI in Dental Radiology and its Impact on Laboratory Referral Patterns and Systemic Costs. Saudi Journal of Medicine and Public Health, 1(2), 1859–1866. https://doi.org/10.64483/202412518

Article Details

Similar Articles

<< < 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)