Managing High-Cost, Technology-Dependent Therapies: Systems for Cellular, Gene, and Advanced Biologics—A Narrative Review
Abstract
Background: The advent of advanced therapy medicinal products (ATMPs), including chimeric antigen receptor T-cell (CAR-T) therapies, in vivo gene therapies, and complex biologics, represents a paradigm shift in treating cancer, genetic disorders, and autoimmune diseases. These "living drugs" and sophisticated molecules present unprecedented challenges, requiring a complete re-engineering of traditional healthcare delivery pathways. Aim: This narrative review synthesizes evidence from 2010-2024 on the integrated, multidisciplinary systems required to safely, effectively, and sustainably manage the clinical and operational lifecycle of high-cost, technology-dependent therapies. Methods: A comprehensive search of PubMed, Scopus, Web of Science, and health policy databases was conducted for peer-reviewed literature and gray literature (white papers, health system reports) addressing the operational, financial, and clinical coordination of advanced therapies. Results: The review identifies five critical, interdependent system pillars: (1) a robust pre-treatment patient and product pathway spanning biomarker screening, cell collection, and manufacturing; (2) a specialized pharmacy and logistics infrastructure for storage, handling, and chain of custody; (3) protocolized clinical delivery and toxicity management anchored by specialized nursing; (4) complex financial navigation and reimbursement models; and (5) coordinated scheduling and data management. Failures in any pillar risk patient harm, therapeutic failure, and catastrophic financial loss. Conclusion: The successful delivery of ATMPs necessitates the creation of dedicated, cross-functional "Advanced Therapy Centers of Excellence." Sustainability demands the development of standardized operational frameworks, novel value-based payment contracts, and continued interdisciplinary research to optimize these complex care ecosystems.
Full text article
References
Awasthi, R., Maier, H. J., Zhang, J., & Lim, S. (2023). Kymriah®(tisagenlecleucel)–an overview of the clinical development journey of the first approved CAR-T therapy. Human vaccines & immunotherapeutics, 19(1), 2210046. https://doi.org/10.1080/21645515.2023.2210046
Bach, P. B., & Pearson, S. D. (2015). Payer and policy maker steps to support value-based pricing for drugs. Jama, 314(23), 2503-2504. doi:10.1001/jama.2015.16843
Bishai, D., Paina, L., Li, Q., Peters, D. H., & Hyder, A. A. (2014). Advancing the application of systems thinking in health: why cure crowds out prevention. Health research policy and systems, 12(1), 28. https://doi.org/10.1186/1478-4505-12-28
Bishop, M. R., Maziarz, R. T., Waller, E. K., Jäger, U., Westin, J. R., McGuirk, J. P., ... & Schuster, S. J. (2019). Tisagenlecleucel in relapsed/refractory diffuse large B-cell lymphoma patients without measurable disease at infusion. Blood advances, 3(14), 2230-2236. https://doi.org/10.1182/bloodadvances.2019000151
Casciano, R., Brougham, M., Neumann, U., & Doherty, B. (2023). A Review of the ICER Unsupported Price Increase Report and its Potential Use in Health Policy Decisions. Health Science Journal, 17(9), 1-5. DOI: 10.36648/1791-809X.17.9.1057
Cunningham, K., DiFilippo, H., Henes, K., Irwin, L. L., Napier, E., & Weber, E. (2021, August). Tisagenlecleucel therapy: nursing considerations for the outpatient setting. In Seminars in Oncology Nursing (Vol. 37, No. 4, p. 151178). WB Saunders. https://doi.org/10.1016/j.soncn.2021.151178
Dever, D. P., & Porteus, M. H. (2017). The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation. Current opinion in hematology, 24(6), 481-488. DOI: 10.1097/MOH.0000000000000385
Dulan, S. O., Viers, K. L., Wagner, J. R., Clark, M. C., Chang, B., Gorospe, G. L., ... & Budde, L. E. (2020). Developing and monitoring a standard-of-care chimeric antigen receptor (CAR) T cell clinical quality and regulatory program. Biology of Blood and Marrow Transplantation, 26(8), 1386-1393. https://doi.org/10.1016/j.bbmt.2020.03.021
Dusetzina, S. B., Huskamp, H. A., & Keating, N. L. (2019). Specialty drug pricing and out-of-pocket spending on orally administered anticancer drugs in Medicare Part D, 2010 to 2019. Jama, 321(20), 2025-2028. doi:10.1001/jama.2019.4492
Faraci, D., Ha, J., Ijioma, S., Wissinger, E., & Tan, R. (2022). HTA33 The Current Impact of ICER Assessments on Payer Decision Making. Value in Health, 25(7), S509. https://doi.org/10.1016/j.jval.2022.04.1165
Fujiwara, Y., Kato, T., Hasegawa, F., Sunahara, M., & Tsurumaki, Y. (2022). The past, present, and future of clinically applied chimeric antigen receptor-T-cell therapy. Pharmaceuticals, 15(2), 207. https://doi.org/10.3390/ph15020207
Gentile, P., Sterodimas, A., Pizzicannella, J., Dionisi, L., De Fazio, D., Calabrese, C., & Garcovich, S. (2020). Systematic review: allogenic use of stromal vascular fraction (SVF) and decellularized extracellular matrices (ECM) as advanced therapy medicinal products (ATMP) in tissue regeneration. International journal of molecular sciences, 21(14), 4982. https://doi.org/10.3390/ijms21144982
Jagannath, S., Joseph, N., Crivera, C., Kharat, A., Jackson, C. C., Valluri, S., ... & Cohen, A. D. (2023). Component costs of CAR-T therapy in addition to treatment acquisition costs in patients with multiple myeloma. Oncology and Therapy, 11(2), 263-275. https://doi.org/10.1007/s40487-023-00228-5
Jørgensen, J., & Kefalas, P. (2021). The use of innovative payment mechanisms for gene therapies in Europe and the USA. Regenerative medicine, 16(4), 405-422. https://doi.org/10.2217/rme-2020-0169
June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361-1365. https://doi.org/10.1126/science.aar6711
Kelkar, A. H., Cliff, E. R. S., Jacobson, C. A., Abel, G. A., Dijk, S. W., Krijkamp, E. M., ... & Cutler, C. (2023). Second-line chimeric antigen receptor T-cell therapy in diffuse large B-cell lymphoma: a cost-effectiveness analysis. Annals of internal medicine, 176(12), 1625-1637. https://doi.org/10.7326/M22-2276
Lee, D. W., Santomasso, B. D., Locke, F. L., Ghobadi, A., Turtle, C. J., Brudno, J. N., ... & Neelapu, S. S. (2019). ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biology of blood and marrow transplantation, 25(4), 625-638. https://doi.org/10.1016/j.bbmt.2018.12.758
Li, Y., Ming, Y., Fu, R., Li, C., Wu, Y., Jiang, T., ... & Liu, Y. (2022). The pathogenesis, diagnosis, prevention, and treatment of CAR-T cell therapy-related adverse reactions. Frontiers in pharmacology, 13, 950923. https://doi.org/10.3389/fphar.2022.950923
Mahadeo, K. M., Khazal, S. J., Abdel-Azim, H., Fitzgerald, J. C., Taraseviciute, A., Bollard, C. M., ... & Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. (2019). Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nature reviews Clinical oncology, 16(1), 45-63. https://doi.org/10.1038/s41571-018-0075-2
Neelapu, S. S., Tummala, S., Kebriaei, P., Wierda, W., Gutierrez, C., Locke, F. L., ... & Shpall, E. J. (2018). Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nature reviews Clinical oncology, 15(1), 47-62. https://doi.org/10.1038/nrclinonc.2017.148
Neumann, P. J., Cohen, J. T., & Ollendorf, D. A. (2021). The right price: a value-based prescription for drug costs. Oxford University Press.
Nezvalova-Henriksen, K., Langebrake, C., Bauters, T., Moreno-Martinez, M. E., Ahnfelt, E., Ekelund, H., ... & Tam, A. (2023). Implementation and operational management of marketed chimeric antigen receptor T cell (CAR-T Cell) therapy—a guidance by the GoCART Coalition Pharmacist Working Group. Bone Marrow Transplantation, 58(10), 1069-1074. https://doi.org/10.1038/s41409-023-02072-7
Piemonti, L., Scholz, H., de Jongh, D., Kerr-Conte, J., van Apeldoorn, A., Shaw, J. A., ... & Berishvili, E. (2023). The relevance of advanced therapy medicinal products in the field of transplantation and the need for academic research access: overcoming bottlenecks and claiming a new time. Transplant International, 36, 11633. https://doi.org/10.3389/ti.2023.11633
Qayed, M., McGuirk, J. P., Myers, G. D., Parameswaran, V., Waller, E. K., Holman, P., ... & Willert, J. (2022). Leukapheresis guidance and best practices for optimal chimeric antigen receptor T-cell manufacturing. Cytotherapy, 24(9), 869-878. https://doi.org/10.1016/j.jcyt.2022.05.003
Ragoonanan, D., Sheikh, I. N., Gupta, S., Khazal, S. J., Tewari, P., Petropoulos, D., ... & Mahadeo, K. M. (2022). The evolution of chimeric antigen receptor T-cell therapy in children, adolescents and young adults with acute lymphoblastic leukemia. Biomedicines, 10(9), 2286. https://doi.org/10.3390/biomedicines10092286
Ravindranath, A., Dubey, A., Suresh, S., Chaudhuri, G., & Chirmule, N. (2022). CAR-T cell therapy in India requires a paradigm shift in training, education and health care processes. Cytotherapy, 24(2), 101-109. https://doi.org/10.1016/j.jcyt.2021.09.007
Selim, A. G., Minson, A., Blombery, P., Dickinson, M., Harrison, S. J., & Anderson, M. A. (2021). CAR-T cell therapy: practical guide to routine laboratory monitoring. Pathology, 53(3), 408-415. https://doi.org/10.1016/j.pathol.2021.02.002
Shah, N. N., Johnson, B. D., Schneider, D., Zhu, F., Szabo, A., Keever-Taylor, C. A., ... & Hari, P. (2020). Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nature medicine, 26(10), 1569-1575. https://doi.org/10.1038/s41591-020-1081-3
Shah, M., Krull, A., Odonnell, L., de Lima, M. J., & Bezerra, E. (2023). Promises and challenges of a decentralized CAR T-cell manufacturing model. Frontiers in Transplantation, 2, 1238535. https://doi.org/10.3389/frtra.2023.1238535
Steinbach, M., Zitella, L. J., Florendo, E., Lee, E., Riccobono, C., DiFilippo, H., & Aronson, E. (2023, December). Nursing care throughout the chimeric antigen receptor t-cell therapy process for multiple myeloma. In Seminars in Oncology Nursing (Vol. 39, No. 6, p. 151505). WB Saunders. https://doi.org/10.1016/j.soncn.2023.151505
Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: current limitations and potential strategies. Blood cancer journal, 11(4), 69. https://doi.org/10.1038/s41408-021-00459-7
Taylor, L., Rodriguez, E. S., Reese, A., & Anderson, K. (2019). Building a Program: Implications for infrastructure, nursing education, and training for CAR T-cell therapy. Clinical journal of oncology nursing, 23(2). DOI: 10.1188/19.CJON.S1.20-26
Tyagarajan, S., Spencer, T., & Smith, J. (2020). Optimizing CAR-T cell manufacturing processes during pivotal clinical trials. Molecular Therapy Methods & Clinical Development, 16, 136-144. https://doi.org/10.1016/j.omtm.2019.11.018
Yao, X., & Matosevic, S. (2021). Cryopreservation of NK and T cells without DMSO for adoptive cell-based immunotherapy. BioDrugs, 35(5), 529-545. https://doi.org/10.1007/s40259-021-00494-7
Authors
Copyright (c) 2024 Abdullah Abdulaziz Ibrahim Alghamdi, Andualrhman Hamad Jaafari, Bander Salem Jaber Almalki, Abdulrhnan Saad Aldawsari, Noor Mohammed Omar Usman, Ashwag Ibrahim Majrashi, Yahya Galib M. Qadhy, Ahmed Mohammed Abu Zibnah, Tirad Rakid Mushih Alruweaili, Rana Ibrahim Al Musabbihi, Sulaf Matir Sultan Alharbi, Saeed Saad Mobark

This work is licensed under a Creative Commons Attribution 4.0 International License.
