Post-Discharge Transition and Readmission Prevention: The Role of Follow-Up and Remote Monitoring

Amani Ayeed Madee Alshahrani (1), Sultan Abdullah Alhuwaymil (2), Salem Naji Aldawsari (3), Mashael Kamal Binsaeeed (4), Ekram Abdulhamid Hamed Khalil (5), Abdullah Mohammed Saad Al-Qahtani (6), Awatef Mohammed Alnujaidi (7), Magdi Mohammed Ali Almazroi (8), Mamdouh Hassan Attia Alnkhali (9), Hanadi Qassim Hamza Alnakhli (10), Fahd Mohammed Nasser Humedi (11), Fayez Mohammed Abdullah Shouk (12)
(1) King Abdullah Hospital – Bisha – Ministry of Health, Saudi Arabia,
(2) Tabrak PHC – Al-Quwayiyah Hospital – Riyadh First Health Cluster, Ministry of Health, Saudi Arabia,
(3) 3Riyadh – Ministry of Health, Saudi Arabia,
(4) Riyadh Specialized Dental Centre – Ministry of Health, Saudi Arabia,
(5) Madinah Health Cluster – Regional Laboratory – Ministry of Health, Saudi Arabia,
(6) Ruwaydah Al-Ard General Hospital – Ministry of Health, Saudi Arabia,
(7) Aljaber ENT Hospital – Al Ahsa – Ministry of Health, Saudi Arabia,
(8) Khulais General Hospital – Ministry of Health, Saudi Arabia,
(9) Maternity and Children Hospital – Medina – Ministry of Health, Saudi Arabia,
(10) Medina Health Center – Primary Health Care (Al-Hijra), Ministry of Health, Saudi Arabia,
(11) Altuwal General Hospital – Ministry of Health, Saudi Arabia,
(12) Altuwal General Hospital – Jazan – Ministry of Health, Saudi Arabia

Abstract

Background: The transition from hospital to home represents a period of profound vulnerability, where fragmented care, medication discrepancies, and poor symptom monitoring contribute to high rates of preventable hospital readmissions. Approximately 15-20% of Medicare beneficiaries are readmitted within 30 days of discharge, representing a major clinical and financial burden. Aim: This narrative review synthesizes evidence from 2010-2024 on integrated, technology-enhanced systems designed to support patients during the post-discharge transition, with a specific focus on preventing avoidable readmissions. Methods: A comprehensive search of PubMed, CINAHL, Scopus, and Web of Science databases was conducted. Thematic analysis integrated literature from health services research, nursing science, health informatics, and operations management. Results: Evidence demonstrates that successful readmission reduction requires a multi-component intervention spanning: 1) Health Services Management structures (dedicated transition programs, risk stratification); 2) Health Informatics tools (automated alerts, telehealth, predictive analytics); 3) Nursing and Health Assistant follow-up (structured phone calls, home visits); 4) Diagnostic Service Coordination (scheduling and communicating test results); and 5) Administrative Coordination (appointment and equipment logistics). Programs that bundle these elements, particularly for high-risk patients, consistently achieve 20-40% reductions in 30-day readmissions. Conclusion: Preventing readmissions is not a singular clinical intervention but a system engineering challenge. It demands the seamless integration of proactive clinical monitoring, enabled by health IT and supported by meticulous logistical coordination. Future success depends on standardizing these integrated pathways and aligning payment models to reward transitional care.

Full text article

Generated from XML file

References

1. Becker, C., Zumbrunn, S., Beck, K., Vincent, A., Loretz, N., Müller, J., ... & Hunziker, S. (2021). Interventions to improve communication at hospital discharge and rates of readmission: a systematic review and meta-analysis. JAMA Network Open, 4(8), e2119346-e2119346. doi:10.1001/jamanetworkopen.2021.19346

2. Berkowitz, S. A., Parashuram, S., Rowan, K., Andon, L., Bass, E. B., Bellantoni, M., ... & Brown, P. M. (2018). Association of a care coordination model with health care costs and utilization: the Johns Hopkins Community Health Partnership (J-CHiP). JAMA network open, 1(7), e184273-e184273. doi:10.1001/jamanetworkopen.2018.4273

3. Coffey, A., Leahy-Warren, P., Savage, E., Hegarty, J., Cornally, N., Day, M. R., ... & O’Caoimh, R. (2019). Interventions to promote early discharge and avoid inappropriate hospital (re) admission: a systematic review. International journal of environmental research and public health, 16(14), 2457. https://doi.org/10.3390/ijerph16142457

4. Curto, V., Einav, L., Finkelstein, A., Levin, J., & Bhattacharya, J. (2019). Health care spending and utilization in public and private Medicare. American Economic Journal: Applied Economics, 11(2), 302-332. DOI: 10.1257/app.20170295

5. Desai, A. S., & Stevenson, L. W. (2012). Rehospitalization for heart failure: predict or prevent?. Circulation, 126(4), 501-506. https://doi.org/10.1161/CIRCULATIONAHA.112.125435

6. Diamond, J., & DeVore, A. D. (2022). New strategies to prevent rehospitalizations for heart failure. Current treatment options in cardiovascular medicine, 24(12), 199-212. https://doi.org/10.1007/s11936-022-00969-y

7. Hansen, L. O., Young, R. S., Hinami, K., Leung, A., & Williams, M. V. (2011). Interventions to reduce 30-day rehospitalization: a systematic review. Annals of internal medicine, 155(8), 520-528. https://doi.org/10.7326/0003-4819-155-8-201110180-00008

8. Harrison, J. D., Auerbach, A. D., Quinn, K., Kynoch, E., & Mourad, M. (2014). Assessing the impact of nurse post-discharge telephone calls on 30-day hospital readmission rates. Journal of general internal medicine, 29(11), 1519-1525. https://doi.org/10.1007/s11606-014-2954-2

9. Hasan, O., Meltzer, D. O., Shaykevich, S. A., Bell, C. M., Kaboli, P. J., Auerbach, A. D., ... & Schnipper, J. L. (2010). Hospital readmission in general medicine patients: a prediction model. Journal of general internal medicine, 25(3), 211-219. https://doi.org/10.1007/s11606-009-1196-1

10. Hirschman, K. B., Shaid, E., McCauley, K., Pauly, M. V., & Naylor, M. D. (2015). Continuity of care: the transitional care model. Online J Issues Nurs, 20(3), 1. DOI:10.3912/OJIN.Vol20No03Man01

11. John, M. E., Mgbekem, M. A., Nsemo, A. D., & Maxwell, G. I. (2016). Missed nursing care, patient outcomes and care outcomes in selected hospitals in Southern Nigeria. nursing, 152, 81-7.

12. Kalisch, B. J., Xie, B., & Dabney, B. W. (2014). Patient-reported missed nursing care correlated with adverse events. American Journal of Medical Quality, 29(5), 415-422. https://doi.org/10.1177/1062860613501715

13. Koehler, F., Koehler, K., Deckwart, O., Prescher, S., Wegscheider, K., Kirwan, B. A., ... & Stangl, K. (2018). Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. The Lancet, 392(10152), 1047-1057. https://doi.org/10.1016/S0140-6736(18)31880-4

14. Kripalani, S., Theobald, C. N., Anctil, B., & Vasilevskis, E. E. (2014). Reducing hospital readmission rates: current strategies and future directions. Annual review of medicine, 65(1), 471-485. https://doi.org/10.1146/annurev-med-022613-090415

15. LaBedz, S. L., Prieto-Centurion, V., Mutso, A., Basu, S., Bracken, N. E., Calhoun, E. A., ... & Krishnan, J. A. (2022). Pragmatic clinical trial to improve patient experience among adults during transitions from hospital to home: the PArTNER study. Journal of general internal medicine, 37(16), 4103-4111. https://doi.org/10.1007/s11606-022-07461-0

16. Lee, K. K., Yang, J., Hernandez, A. F., Steimle, A. E., & Go, A. S. (2016). Post-discharge follow-up characteristics associated with 30-day readmission after heart failure hospitalization. Medical care, 54(4), 365-372. DOI: 10.1097/MLR.0000000000000492

17. Leppin, A. L., Gionfriddo, M. R., Kessler, M., Brito, J. P., Mair, F. S., Gallacher, K., ... & Montori, V. M. (2014). Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA internal medicine, 174(7), 1095-1107. doi:10.1001/jamainternmed.2014.1608

18. Levine, D. M., Ouchi, K., Blanchfield, B., Saenz, A., Burke, K., Paz, M., ... & Schnipper, J. L. (2020). Hospital-level care at home for acutely ill adults: a randomized controlled trial. Annals of internal medicine, 172(2), 77-85. https://doi.org/10.7326/M19-0600

19. Long, H., Xie, D., Li, X., Jiang, Q., Zhou, Z., Wang, H., ... & Lei, G. (2022). Incidence, patterns and risk factors for readmission following knee arthroplasty in China: a national retrospective cohort study. International Journal of Surgery, 104, 106759. https://doi.org/10.1016/j.ijsu.2022.106759

20. Machado, S. J. (2019). Reducing 30-Day Readmission Rates in Chronic Obstructive Pulmonary Disease Patients (Doctoral dissertation, Walden University).

21. Mashhadi, S. F., Hisam, A., Sikander, S., Rathore, M. A., Rifaq, F., Khan, S. A., & Hafeez, A. (2021). Post discharge mHealth and teach-back communication effectiveness on hospital readmissions: a systematic review. International journal of environmental research and public health, 18(19), 10442. https://doi.org/10.3390/ijerph181910442

22. Mitchell, S. E., Martin, J., Holmes, S., van Deusen Lukas, C., Cancino, R., Paasche-Orlow, M., ... & Jack, B. (2016). How hospitals reengineer their discharge processes to reduce readmissions. The Journal for Healthcare Quality (JHQ), 38(2), 116-126. DOI: 10.1097/JHQ.0000000000000005

23. Naylor, M. D., Shaid, E. C., Carpenter, D., Gass, B., Levine, C., Li, J., ... & Williams, M. V. (2017). Components of comprehensive and effective transitional care. Journal of the American Geriatrics Society, 65(6), 1119-1125. https://doi.org/10.1111/jgs.14782

24. Noah, B., Keller, M. S., Mosadeghi, S., Stein, L., Johl, S., Delshad, S., ... & Spiegel, B. M. (2018). Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ digital medicine, 1(1), 20172. https://doi.org/10.1038/s41746-017-0002-4

25. O’Brien, B. C., Harris, I. B., Beckman, T. J., Reed, D. A., & Cook, D. A. (2014). Standards for reporting qualitative research: a synthesis of recommendations. Academic medicine, 89(9), 1245-1251. DOI: 10.1097/ACM.0000000000000388

26. Qiu, L., Kumar, S., Sen, A., & Sinha, A. P. (2022). Impact of the Hospital Readmission Reduction Program on hospital readmission and mortality: An economic analysis. Production and Operations Management, 31(5), 2341-2360. https://doi.org/10.1111/poms.13724

27. Shams, I., Ajorlou, S., & Yang, K. (2015). A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health care management science, 18(1), 19-34. https://doi.org/10.1007/s10729-014-9278-y

28. Van Walraven, C., Dhalla, I. A., Bell, C., Etchells, E., Stiell, I. G., Zarnke, K., ... & Forster, A. J. (2010). Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Cmaj, 182(6), 551-557. https://doi.org/10.1503/cmaj.091117

29. Winkler, S., Koehler, K., Prescher, S., Koehler, M., Kirwan, B. A., Tajsic, M., & Koehler, F. (2021). Is 24/7 remote patient management in heart failure necessary? Results of the telemedical emergency service used in the TIM-HF and in the TIM-HF2 trials. ESC Heart Failure, 8(5), 3613-3620. https://doi.org/10.1002/ehf2.13413

30. Yeung, K., Dorsey, C. N., & Mettert, K. (2021). Effect of new Medicare enrollment on health, healthcare utilization, and cost: a scoping review. Journal of the American Geriatrics Society, 69(8), 2335-2343. https://doi.org/10.1111/jgs.17113

31. Zejnilović, L., Oliveira, P., & Canhão, H. (2016). Innovations by and for patients, and their place in the future health care system. In Boundaryless Hospital: Rethink and Redefine Health Care Management (pp. 341-357). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49012-9_19

32. Zuckerman, R. B., Sheingold, S. H., Orav, E. J., Ruhter, J., & Epstein, A. M. (2016). Readmissions, observation, and the hospital readmissions reduction program. New England Journal of Medicine, 374(16), 1543-1551. DOI: 10.1056/NEJMsa1513024

Authors

Amani Ayeed Madee Alshahrani
amashahrani@moh.gov.sa (Primary Contact)
Sultan Abdullah Alhuwaymil
Salem Naji Aldawsari
Mashael Kamal Binsaeeed
Ekram Abdulhamid Hamed Khalil
Abdullah Mohammed Saad Al-Qahtani
Awatef Mohammed Alnujaidi
Magdi Mohammed Ali Almazroi
Mamdouh Hassan Attia Alnkhali
Hanadi Qassim Hamza Alnakhli
Fahd Mohammed Nasser Humedi
Fayez Mohammed Abdullah Shouk
Alshahrani, A. A. M., Alhuwaymil, S. A., Aldawsari, S. N., Binsaeeed, M. K., Khalil, E. A. H., Al-Qahtani, A. M. S., … Shouk, F. M. A. (2024). Post-Discharge Transition and Readmission Prevention: The Role of Follow-Up and Remote Monitoring. Saudi Journal of Medicine and Public Health, 1(2), 1920–1926. https://doi.org/10.64483/202412538

Article Details