Blockchain for Health Assistant Audit Trails and Consent Management: A Review of Implementations and Security Trade-offs

Saad Mutlaq Alluhaydan (1), Mohammed Obaid Alshammari (1), Yousef Jazaa Obaid Alshmilan (1), Ahmed Hamoud Alshammari (1), Abdulwahab Muaybid Abdullah Alrashdi (1), Raid Safg Alshammre (1), Tariq Khalifah Alshammari (1), Abdullah Salem Al-Azmi (1), Salman Mohammed Al-bashir (1), Faisal Abdullah AlAjami (1), Ali Ahmad Mohammed Aqeeli (2), Mohammed Saleem Marzouq Alhejaili (3)
(1) Ministry of Health, Saudi Arabia,
(2) Prince Mohammed bin Nasser Hospital, Ministry of Health, Saudi Arabia,
(3) King Salman Medical City, Ministry of Health, Saudi Arabia

Abstract

Background: The rise of AI health assistants and digital tools raises concerns about data security and consent management. Traditional systems are prone to failures and provide limited transparency in data sharing. Blockchain technology offers a decentralized, immutable, and secure solution to these issues. Aim: This narrative review critically examines the real-world implementations and security trade-offs of blockchain technology when applied specifically to health assistant audit trails and consent management, moving beyond theoretical propositions. Methods: A systematic search of peer-reviewed literature (2010-2024) was conducted across Scopus, IEEE Xplore, PubMed, and ACM Digital Library. Implementation case studies, prototypes, and theoretical frameworks were analyzed to assess technical architectures, performance metrics, and security evaluations. Results: Findings indicate an emerging landscape where blockchain proves useful for creating secure audit logs in AI decision-making and dynamic consent models using smart contracts. However, challenges persist, including performance and scalability issues, key management complexities, data linkage risks, and conflicts between immutability and regulatory requirements such as the GDPR's "right to be forgotten." Conclusion: Blockchain serves as a foundational layer to improve security and transparency in health assistant ecosystems. Its future potential relies on hybrid architectures, advanced cryptographic methods such as zero-knowledge proofs, and an awareness of the new security and operational challenges that arise. It is not merely a database but a comprehensive solution for integrity and control. 


 

Full text article

Generated from XML file

References

Almashaqbeh, G., & Solomon, R. (2022, June). Sok: Privacy-preserving computing in the blockchain era. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P) (pp. 124-139). IEEE. https://doi.org/10.1109/EuroSP53844.2022.00016

Azaria, A., Ekblaw, A., Vieira, T., & Lippman, A. (2016, August). Medrec: Using blockchain for medical data access and permission management. In 2016 2nd international conference on open and big data (OBD) (pp. 25-30). IEEE. https://doi.org/10.1109/OBD.2016.11

Bernabe, J. B., Canovas, J. L., Hernandez-Ramos, J. L., Moreno, R. T., & Skarmeta, A. (2019). Privacy-preserving solutions for blockchain: Review and challenges. Ieee Access, 7, 164908-164940. https://doi.org/10.1109/ACCESS.2019.2950872

Ekblaw, A., Azaria, A., Halamka, J. D., & Lippman, A. (2016, August). A Case Study for Blockchain in Healthcare:“MedRec” prototype for electronic health records and medical research data. In Proceedings of IEEE open & big data conference (Vol. 13, No. 13).

Elangovan, D., Long, C. S., Bakrin, F. S., Tan, C. S., Goh, K. W., Yeoh, S. F., ... & Ming, L. C. (2022). The use of blockchain technology in the health care sector: systematic review. JMIR medical informatics, 10(1), e17278. https://doi.org/10.2196/17278

Gordon, W. J., & Catalini, C. (2018). Blockchain technology for healthcare: facilitating the transition to patient-driven interoperability. Computational and structural biotechnology journal, 16, 224-230. https://doi.org/10.1016/j.csbj.2018.06.003

Jagtap, S. T., Thakar, C. M., Phasinam, K., Garg, S., & Ventayen, R. J. M. (2021, August). A framework for secure healthcare system using blockchain and smart contracts. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 922-926). IEEE. https://doi.org/10.1109/ICESC51422.2021.9532644

Khatri, R. B., Erku, D., Endalamaw, A., Wolka, E., Nigatu, F., Zewdie, A., & Assefa, Y. (2023). Multisectoral actions in primary health care: A realist synthesis of scoping review. Plos one, 18(8), e0289816. https://doi.org/10.1371/journal.pone.0289816

Kumar, T., Ramani, V., Ahmad, I., Braeken, A., Harjula, E., & Ylianttila, M. (2018, September). Blockchain utilization in healthcare: Key requirements and challenges. In 2018 IEEE 20th International conference on e-health networking, applications and services (Healthcom) (pp. 1-7). IEEE. https://doi.org/10.1109/HealthCom.2018.8531136

Kuo, T. T., & Ohno-Machado, L. (2018). Modelchain: Decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks. arXiv preprint arXiv:1802.01746. https://doi.org/10.48550/arXiv.1802.01746

Kuo, T. T., Kim, H. E., & Ohno-Machado, L. (2017). Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 24(6), 1211-1220. https://doi.org/10.1093/jamia/ocx068

Mamoshina, P., Ojomoko, L., Yanovich, Y., Ostrovski, A., Botezatu, A., Prikhodko, P., ... & Zhavoronkov, A. (2018). Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 9: 5665–5690.

Marichamy, V. S., & Natarajan, V. (2023). Blockchain based securing medical records in big data analytics. Data & Knowledge Engineering, 144, 102122. https://doi.org/10.1016/j.datak.2022.102122

McGhin, T., Choo, K. K. R., Liu, C. Z., & He, D. (2019). Blockchain in healthcare applications: Research challenges and opportunities. Journal of network and computer applications, 135, 62-75. https://doi.org/10.1016/j.jnca.2019.02.027

Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature medicine, 25(1), 37-43. https://doi.org/10.1038/s41591-018-0272-7

Ramzan, S., Aqdus, A., Ravi, V., Koundal, D., Amin, R., & Al Ghamdi, M. A. (2022). Healthcare applications using blockchain technology: Motivations and challenges. IEEE Transactions on Engineering Management, 70(8), 2874-2890. https://doi.org/10.1109/TEM.2022.3189734

Recio-Saucedo, A., Crane, K., Meadmore, K., Fackrell, K., Church, H., Fraser, S., & Blatch-Jones, A. (2022). What works for peer review and decision-making in research funding: a realist synthesis. Research integrity and peer review, 7(1), 2. https://doi.org/10.1186/s41073-022-00120-2

Rees, C. E., Crampton, P. E., Nguyenand, V. N., & Monrouxe, L. V. (2023). Introducing realist approaches in health professions education research. Foundations of health professions education research: Principles, perspectives and practices, 102-121. https://doi.org/10.1002/9781394322213.ch6

Roodbari, H., Axtell, C., Nielsen, K., & Sorensen, G. (2022). Organisational interventions to improve employees' health and wellbeing: A realist synthesis. Applied Psychology, 71(3), 1058-1081. https://doi.org/10.1111/apps.12346

Saeed, H., Malik, H., Bashir, U., Ahmad, A., Riaz, S., Ilyas, M., ... & Khan, M. I. A. (2022). Blockchain technology in healthcare: A systematic review. Plos one, 17(4), e0266462. https://doi.org/10.1371/journal.pone.0266462

Saini, A., Zhu, Q., Singh, N., Xiang, Y., Gao, L., & Zhang, Y. (2020). A smart-contract-based access control framework for cloud smart healthcare system. IEEE Internet of Things Journal, 8(7), 5914-5925. https://doi.org/10.1109/JIOT.2020.3032997

Sharma, U., Ganapathi, A., Singh, A., & Singh, K. K. (2023). Blockchain in Healthcare: Use Cases. Blockchain and Deep Learning for Smart Healthcare, 147-169. https://doi.org/10.1002/9781119792406.ch7

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7

Tullo, E., Wakeling, L., Pearse, R., Khoo, T. K., & Teodorczuk, A. (2023). Lost in translation: how can education about dementia be effectively integrated into medical school contexts? A realist synthesis. BMJ open, 13(11), e077028. https://doi.org/10.1136/bmjopen-2023-077028

Vukolić, M. (2015, October). The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In International workshop on open problems in network security (pp. 112-125). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-39028-4_9

Wong, G., Greenhalgh, T., Westhorp, G., Buckingham, J., & Pawson, R. (2013). RAMESES publication standards: realist syntheses. BMC medicine, 11(1), 21. https://doi.org/10.1186/1741-7015-11-21

Xia, Q., Sifah, E. B., Smahi, A., Amofa, S., & Zhang, X. (2017). BBDS: Blockchain-based data sharing for electronic medical records in cloud environments. Information, 8(2), 44. https://doi.org/10.3390/info8020044

Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain technology overview. arXiv preprint arXiv:1906.11078. https://doi.org/10.6028/NIST.IR.8202

Zhang, P., White, J., Schmidt, D. C., Lenz, G., & Rosenbloom, S. T. (2018). FHIRChain: applying blockchain to securely and scalably share clinical data. Computational and structural biotechnology journal, 16, 267-278. https://doi.org/10.1016/j.csbj.2018.07.004

Zhang, P., Kelley, A., Schmidt, D. C., & White, J. (2023). Design pattern recommendations for building decentralized healthcare applications. Frontiers in Blockchain, 6, 1006058. https://doi.org/10.3389/fbloc.2023.1006058

Zhu, S., Gilbert, M., Chetty, I., & Siddiqui, F. (2022). The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical

Authors

Saad Mutlaq Alluhaydan
eng-saad-m@hotmail.com (Primary Contact)
Mohammed Obaid Alshammari
Yousef Jazaa Obaid Alshmilan
Ahmed Hamoud Alshammari
Abdulwahab Muaybid Abdullah Alrashdi
Raid Safg Alshammre
Tariq Khalifah Alshammari
Abdullah Salem Al-Azmi
Salman Mohammed Al-bashir
Faisal Abdullah AlAjami
Ali Ahmad Mohammed Aqeeli
Mohammed Saleem Marzouq Alhejaili
Alluhaydan, S. M., Mohammed Obaid Alshammari, Yousef Jazaa Obaid Alshmilan, Ahmed Hamoud Alshammari, Abdulwahab Muaybid Abdullah Alrashdi, Raid Safg Alshammre, … Mohammed Saleem Marzouq Alhejaili. (2024). Blockchain for Health Assistant Audit Trails and Consent Management: A Review of Implementations and Security Trade-offs. Saudi Journal of Medicine and Public Health, 1(2), 1959–1966. https://doi.org/10.64483/202412556

Article Details