Convergent Intelligence for Pandemic Preparedness: A Narrative Review of Integrated Digital Biosurveillance Systems Utilizing Pre-Diagnostic Data Streams

Khaloud Abdullah Fahad Alnassar (1), Nora Yahya Hussain Humadi (2), Taleb Huraymis Almutairi (3), Amal Mohamad Almadani (4), Nooh Thawab Almotiri (5), Abdulrahman Ali Nasser Alharbi (6), Ahmed Mueibid Mohammed Alharbi (7), Abdulaziz Khalaf Ghareeb Aldhaferi (8), Ahmed Mohammed Osaykir Alrashdi (9), Fahad Nazal Khalaf Alalawi (10), Dowahim Abdullah Aldosrai (11), Badr Mohsen Samir Al-Bashri Al-Harbi (12), Mohammed Shaya Alshmmari (13), Maha Sultan Majed Alotaibi (14)
(1) Almargab PHC- First Health Cluster-Riyadh, Ministry of Health, Saudi Arabia,
(2) Erada Hospital and Mental Health ,Ministry of Health, Saudi Arabia,
(3) Alyamamah Hospital, Ministry of Health, South Africa,
(4) King Salman bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia,
(5) Ministry of Health, Saudi Arabia,
(6) King Fahd Central Hospital -Jazan,Ministry of Health, South Africa,
(7) Riyadh Second Health Cluster, Primary Health Care, Ministry of Health, Saudi Arabia,
(8) Al-Rabie Health Center – Riyadh, Ministry of Health, Saudi Arabia,
(9) Al-Mursalat Health Center, Ministry of Health, Saudi Arabia,
(10) King Salman Kidney Center – Riyadh, Ministry of Health, Saudi Arabia,
(11) First Riyadh Health Cluster, Ministry of Health, Saudi Arabia,
(12) Al-Qassim - Al-Badai'a Al-Wusta Health Center, Ministry of Health, Saudi Arabia,
(13) King Salman Specialist Hospital, Hail, Ministry of Health, Saudi Arabia,
(14) Albjadyah PHC, Third Health Cluster, Riyadh, Saudi Arabia, Ministry of Health, South Sudan

Abstract

Background: The early detection of infectious disease outbreaks is a critical public health imperative. Traditional surveillance, reliant on confirmed laboratory reports, often introduces a critical delay. The concept of the biosurveillance continuum advocates for the real-time integration of pre-diagnostic data streams from across the healthcare ecosystem to provide earlier warning. Aim: This narrative review systematically synthesizes the literature on integrated systems that combine syndromic Emergency Medical Services (EMS) data, over-the-counter (OTC) pharmacy sales, radiology findings, and nursing home reports for the early detection of infectious disease outbreaks. Methods: A systematic search was conducted across PubMed/MEDLINE, CINAHL, Scopus, and IEEE Xplore for studies published between 2010-2024. A narrative synthesis was performed, analyzing system architectures, detection performance, and implementation challenges. Results: Each data stream offers unique benefits for public health monitoring. EMS data ensures geographic and temporal insight into illnesses like influenza-like illness (ILI). Over-the-counter (OTC) sales data reflect symptom onset across populations. NLP analysis of radiology reports can detect pneumonia cluster patterns before definitive diagnosis. Nursing home data provides vital surveillance for high-risk groups. Effective integration of these sources necessitates Health Informatics platforms for data aggregation and visualization, supported by robust epidemiological frameworks. Conclusion: An integrated biosurveillance system utilizing EMS, pharmacy, radiology, and nursing home data can improve early outbreak detection. However, challenges such as data standardization, interoperability, privacy, and collaboration must be addressed to maximize its effectiveness. Investing in these systems is crucial for pandemic preparedness.

Full text article

Generated from XML file

References

Andersson, T., Bjelkmar, P., Hulth, A., Lindh, J., Stenmark, S., & Widerström, M. (2014). Syndromic surveillance for local outbreak detection and awareness: evaluating outbreak signals of acute gastroenteritis in telephone triage, web-based queries and over-the-counter pharmacy sales. Epidemiology & Infection, 142(2), 303-313. doi:10.1017/S0950268813001088

Buckeridge, D. L. (2007). Outbreak detection through automated surveillance: a review of the determinants of detection. Journal of biomedical informatics, 40(4), 370-379. https://doi.org/10.1016/j.jbi.2006.09.003

Cassell, K., Zipfel, C. M., Bansal, S., & Weinberger, D. M. (2022). Trends in non-COVID-19 hospitalizations prior to and during the COVID-19 pandemic period, United States, 2017–2021. Nature Communications, 13(1), 5930. https://doi.org/10.1038/s41467-022-33686-y

Chretien, J. P., Rivers, C. M., & Johansson, M. A. (2016). Make data sharing routine to prepare for public health emergencies. PLoS medicine, 13(8), e1002109. https://doi.org/10.1371/journal.pmed.1002109

Duijster, J. W., Doreleijers, S. D., Pilot, E., van der Hoek, W., Kommer, G. J., van der Sande, M. A., ... & van Asten, L. C. (2020). Utility of emergency call centre, dispatch and ambulance data for syndromic surveillance of infectious diseases: a scoping review. European journal of public health, 30(4), 639-647. https://doi.org/10.1093/eurpub/ckz177

Dixon, B. E., McGowan, J. J., & Grannis, S. J. (2011, October). Electronic laboratory data quality and the value of a health information exchange to support public health reporting processes. In AMIA annual symposium proceedings (Vol. 2011, p. 322).

Dugas, A. F., Jalalpour, M., Gel, Y., Levin, S., Torcaso, F., Igusa, T., & Rothman, R. E. (2013). Influenza forecasting with Google flu trends. PloS one, 8(2), e56176. https://doi.org/10.1371/journal.pone.0056176

Elkefi, S., & Asan, O. (2022). Digital twins for managing health care systems: rapid literature review. Journal of medical Internet research, 24(8), e37641. https://doi.org/10.2196/37641

Ferraro, C. F., Findlater, L., Morbey, R., Hughes, H. E., Harcourt, S., Hughes, T. C., ... & Smith, G. E. (2021). Describing the indirect impact of COVID-19 on healthcare utilisation using syndromic surveillance systems. BMC Public Health, 21(1), 2019. https://doi.org/10.1186/s12889-021-12117-5

Grannis, S. J., Stevens, K. C., & Merriwether, R. (2010). Leveraging health information exchange to support public health situational awareness: the Indiana experience. Online journal of public health informatics, 2(2), ojphi-v2i2.

Hswen, Y., Brownstein, J. S., Liu, J., & Hawkins, J. B. (2017). Use of a digital health application for influenza surveillance in China. American journal of public health, 107(7), 1130-1136. https://doi.org/10.2105/AJPH.2017.303767

Hughes, M. M., Groenewold, M. R., Lessem, S. E., Xu, K., & Ussery, E. N. (2020). RE, Wiegand, X. Qin, T. Do, D. Thomas, D., S. Tsai, A. Davidson, J. Latash, S. Eckel, J. Collins, M. Ojo, L. McHugh, W. Li, J. Chen, J. Chan, JM Wortham, S. Reagan-Steiner, JT Lee, SC Reddy, DT Kuhar, SL Burrer, MJ Stuckey,“Update: Characteristics of Health Care Personnel with COVID-19-United States, 1364-1368.

Hulth, A., Rydevik, G., & Linde, A. (2009). Web queries as a source for syndromic surveillance. PloS one, 4(2), e4378. https://doi.org/10.1371/journal.pone.0004378

Ising, A., Proescholdbell, S., Harmon, K. J., Sachdeva, N., Marshall, S. W., & Waller, A. E. (2016). Use of syndromic surveillance data to monitor poisonings and drug overdoses in state and local public health agencies. Injury prevention, 22(Suppl 1), i43-i49. https://doi.org/10.1136/injuryprev-2015-041821n

Johansson, M. A., Reich, N. G., Hota, A., Brownstein, J. S., & Santillana, M. (2016). Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico. Scientific reports, 6(1), 33707. https://doi.org/10.1038/srep33707

Khan, Y., O’Sullivan, T., Brown, A., Tracey, S., Gibson, J., Généreux, M., ... & Schwartz, B. (2018). Public health emergency preparedness: a framework to promote resilience. BMC public health, 18(1), 1344. https://doi.org/10.1186/s12889-018-6250-7

Kleinman, K. P., & Abrams, A. M. (2006). Assessing surveillance using sensitivity, specificity and timeliness. Statistical methods in medical research, 15(5), 445-464. https://doi.org/10.1177/0962280206071641

Kohli, M., Prevedello, L. M., Filice, R. W., & Geis, J. R. (2017). Implementing machine learning in radiology practice and research. American journal of roentgenology, 208(4), 754-760. https://doi.org/10.2214/AJR.16.17224

Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C., Baxter, S. L., Liu, G., ... & Xia, H. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature medicine, 25(3), 433-438. https://doi.org/10.1038/s41591-018-0335-9

Mathes, R. W., Lall, R., Levin-Rector, A., Sell, J., Paladini, M., Konty, K. J., ... & Weiss, D. (2017). Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system. PloS one, 12(9), e0184419. https://doi.org/10.1371/journal.pone.0184419

M'ikanatha, N. M., Lynfield, R., Julian, K. G., Van Beneden, C. A., & Valk, H. D. (2013). Infectious disease surveillance: a cornerstone for prevention and control. Infectious disease surveillance, 1-20. https://doi.org/10.1002/9781118543504.ch1

McMichael, T. M., Currie, D. W., Clark, S., Pogosjans, S., Kay, M., Schwartz, N. G., ... & Duchin, J. S. (2020). Epidemiology of COVID-19 in a long-term care facility in King County, Washington. New England Journal of Medicine, 382(21), 2005-2011. DOI: 10.1056/NEJMoa2005412

Mei, X., Lee, H. C., Diao, K. Y., Huang, M., Lin, B., Liu, C., ... & Yang, Y. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature medicine, 26(8), 1224-1228. https://doi.org/10.1038/s41591-020-0931-3

Menni, C., Valdes, A. M., Freidin, M. B., Sudre, C. H., Nguyen, L. H., Drew, D. A., ... & Spector, T. D. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature medicine, 26(7), 1037-1040. https://doi.org/10.1038/s41591-020-0916-2

Muchaal, P. K., Parker, S., Meganath, K., Landry, L., & Aramini, J. (2015). Evaluation of a national pharmacy‐based syndromic surveillance system. Canada Communicable Disease Report, 41(9), 203. https://doi.org/10.14745/ccdr.v41i09a01

Nuzzo, J. B., Meyer, D., Snyder, M., Ravi, S. J., Lapascu, A., Souleles, J., ... & Bishai, D. (2019). What makes health systems resilient against infectious disease outbreaks and natural hazards? Results from a scoping review. BMC public health, 19(1), 1310. https://doi.org/10.1186/s12889-019-7707-z

Ramay, B. M., Jara, J., Moreno, M. P., Lupo, P., Serrano, C., Alvis, J. P., ... & Kaydos-Daniels, S. C. (2022). Self-medication and ILI etiologies among individuals presenting at pharmacies with influenza-like illness: Guatemala City, 2018 influenza season. BMC Public Health, 22(1), 1541. https://doi.org/10.1186/s12889-022-13962-8

Rosenkötter, N., Ziemann, A., Riesgo, L. G. C., Gillet, J. B., Vergeiner, G., Krafft, T., & Brand, H. (2013). Validity and timeliness of syndromic influenza surveillance during the autumn/winter wave of A (H1N1) influenza 2009: results of emergency medical dispatch, ambulance and emergency department data from three European regions. BMC Public Health, 13(1), 905. https://doi.org/10.1186/1471-2458-13-905

Rumbold, J. M. M., & Pierscionek, B. (2017). The effect of the general data protection regulation on medical research. Journal of medical Internet research, 19(2), e47. https://doi.org/10.2196/jmir.7108

Shah, R., Della Porta, A., Leung, S., Samuels-Kalow, M., Schoenfeld, E. M., Richardson, L. D., & Lin, M. P. (2021). A scoping review of current social emergency medicine research. Western Journal of Emergency Medicine, 22(6), 1360. https://doi.org/10.5811/westjem.2021.4.51518

Soltan, A. A., Yang, J., Pattanshetty, R., Novak, A., Yang, Y., Rohanian, O., ... & Clifton, D. A. (2021). Real-world evaluation of AI-driven COVID-19 triage for emergency admissions: External validation & operational assessment of lab-free and high-throughput screening solutions. medRxiv, 2021-08. https://doi.org/10.1101/2021.08.24.21262376

Stone, N. D., Ashraf, M. S., Calder, J., Crnich, C. J., Crossley, K., Drinka, P. J., ... & Bradley, S. F. (2012). Surveillance definitions of infections in long-term care facilities: revisiting the McGeer criteria. Infection Control & Hospital Epidemiology, 33(10), 965-977. doi:10.1086/667743

Sugishita, Y., Sugawara, T., Ohkusa, Y., Ishikawa, T., Yoshida, M., & Endo, H. (2020). Syndromic surveillance using ambulance transfer data in Tokyo, Japan. Journal of Infection and Chemotherapy, 26(1), 8-12. https://doi.org/10.1016/j.jiac.2019.09.011

Syrowatka, A., Kuznetsova, M., Alsubai, A., Beckman, A. L., Bain, P. A., Craig, K. J. T., ... & Bates, D. W. (2021). Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases. NPJ digital medicine, 4(1), 96. https://doi.org/10.1038/s41746-021-00459-8

Thrupp, L., Bradley, S., Smith, P., Simor, A., Gantz, N., Crossley, K., ... & SHEA Long-Term-Care Committee. (2004). Tuberculosis prevention and control in long-term–care facilities for older adults. Infection Control & Hospital Epidemiology, 25(12), 1097-1108. doi:10.1086/502350

Wagner, M. M., Tsui, F. C., Espino, J. U., Dato, V. M., Sitting, D. F., Caruana, R. A., ... & Fridsma, D. B. (2001). The emerging science of very early detection of disease outbreaks. Journal of public health management and practice, 7(6), 51-59.

Wedd, J., Basu, M., Curtis, L. M., Smith, K., Lo, D. J., Serper, M., ... & Patzer, R. E. (2019). Racial, ethnic, and socioeconomic disparities in web-based patient portal usage among kidney and liver transplant recipients: cross-sectional study. Journal of medical Internet research, 21(4), e11864. https://doi.org/10.2196/11864

Wong, G., Greenhalgh, T., Westhorp, G., Buckingham, J., & Pawson, R. (2013). RAMESES publication standards: Meta‐narrative reviews. Journal of advanced nursing, 69(5), 987-1004. https://doi.org/10.1111/jan.12092

Yamana, T. K., Kandula, S., & Shaman, J. (2017). Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States. PLoS computational biology, 13(11), e1005801. https://doi.org/10.1371/journal.pcbi.1005801

Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. In Artificial intelligence in medicine (pp. 437-453). Academic Press. https://doi.org/10.1016/B978-0-12-821259-2.00022-3

Authors

Khaloud Abdullah Fahad Alnassar
Kalnassar@moh.gov.sa (Primary Contact)
Nora Yahya Hussain Humadi
Taleb Huraymis Almutairi
Amal Mohamad Almadani
Nooh Thawab Almotiri
Abdulrahman Ali Nasser Alharbi
Ahmed Mueibid Mohammed Alharbi
Abdulaziz Khalaf Ghareeb Aldhaferi
Ahmed Mohammed Osaykir Alrashdi
Fahad Nazal Khalaf Alalawi
Dowahim Abdullah Aldosrai
Badr Mohsen Samir Al-Bashri Al-Harbi
Mohammed Shaya Alshmmari
Maha Sultan Majed Alotaibi
Alnassar, K. A. F., Nora Yahya Hussain Humadi, Taleb Huraymis Almutairi, Amal Mohamad Almadani, Nooh Thawab Almotiri, Abdulrahman Ali Nasser Alharbi, … Maha Sultan Majed Alotaibi. (2024). Convergent Intelligence for Pandemic Preparedness: A Narrative Review of Integrated Digital Biosurveillance Systems Utilizing Pre-Diagnostic Data Streams. Saudi Journal of Medicine and Public Health, 1(2), 2174–2182. https://doi.org/10.64483/202412609

Article Details