Precision Pharmacy in Hematology: Integration of Pharmacogenomics into Clinical Decision-Making in Anticoagulant and Chemotherapeutic Agents

Authors

  • Riyad Yahya Thubab Kingdom of Saudi Arabia, Department of Hematology lab, King Fahd Central Hospital, Jazan Cluster, Ministry of Health, Jazan, Saudi Arabia
  • Hafed Mohammed Madkhali Kingdom of Saudi Arabia, Department of Hematology lab, King Fahd Central Hospital, Jazan Cluster, Ministry of Health, Jazan, Saudi Arabia
  • Hassan Omar Assiri Kingdom of Saudi Arabia,Department of Hematology lab, King Fahd Central Hospital, Jazan Cluster, Ministry of Health, Jazan, Saudi Arabia

DOI:

https://doi.org/10.64483/jmph-81

Abstract

Background: Precision pharmacy, driven by pharmacogenomics, personalizes anticoagulant and chemotherapeutic therapy based on the genetic profile of the patient, which enhances the outcome of therapy in hematologic diseases. Aim: This review attempts to address the integration of pharmacogenomics into decision-making regarding anticoagulants and chemotherapeutics in hematology with special reference to the pharmacist. Methods: Systematic review of literature using PubMed, Scopus, and Web of Science was conducted for studies between the years 2020-2024. Selection criteria focused on pharmacogenomic applications in hematology. Data were integrated to identify key gene-drug interactions, implementation strategies in clinics, and hindrances. Results: Pharmacogenomic testing of CYP2C9/VKORC1 for warfarin dosing reduced bleeding events by 15%, while TPMT/NUDT15 testing for thiopurines reduced myelosuppression by 25%. Clinical decision support systems (CDSS) and proactive testing, like the PHASER program, improved outcomes by 12–18%. Limitations involve cost, availability, and clinician training constraints. Conclusion: Pharmacogenomics improves the safety and efficacy of anticoagulant and chemotherapeutic treatment in hematology, with pharmacists as central implementers. Continued advances in AI and multi-omics will progressively optimize precision pharmacy.

References

Alhabeeb, S., Almetrek , A. A., Al-Amri, M. I., Alajlan, A. A. A., Alfehaid , F. A. S., Alsaudi, Mohanad K. I., & Alsheeb, A. A. A. (2025). Pharmacological Role and Clinical Applications of 5α-Reductase Inhibitors-Review Article for Pharmacists and Healthcare Professionals. Saudi Journal of Medicine and Public Health, 2(2), 85–94. https://doi.org/10.64483/jmph-40‬‬‬

ALHARBI, S. M., al harish, T. M., Attyah Zead Alqurashi, E., Alsubaie, M. D., Alanazi , N. M., Almutairi, B. A., … Alsharari, Y. D. D. (2025). Artificial Intelligence and Robotics in Surgery: The Future of Precision Medicine. Saudi Journal of Medicine and Public Health, 2(2), 159–170. https://doi.org/10.64483/jmph-69

Amstutz, U., Henricks, L. M., Offer, S. M., Barbarino, J., Schellens, J. H., Swen, J. J., ... & Schwab, M. (2018). Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clinical Pharmacology & Therapeutics, 103(2), 210-216. https://doi.org/10.1002/cpt.911

Caudle, K. E., Dunnenberger, H. M., Freimuth, R. R., Peterson, J. F., Burlison, J. D., Whirl-Carrillo, M., ... & Hoffman, J. M. (2017). Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genetics in Medicine, 19(2), 215-223. https://doi.org/10.1038/gim.2016.87

Caudle, K. E., Sangkuhl, K., Whirl‐Carrillo, M., Swen, J. J., Haidar, C. E., Klein, T. E., ... & Gaedigk, A. (2020). Standardizing CYP 2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clinical and translational science, 13(1), 116-124. https://doi.org/10.1111/cts.12692

Cereja-Pantoja, K. B. C., de Brito Azevedo, T. C., Vinagre, L. W. M. S., de Moraes, F. C. A., da Costa Nunes, G. G., Monte, N., ... & Carneiro dos Santos, N. P. (2024). Alterations in pharmacogenetic genes and their implications for imatinib resistance in Chronic Myeloid Leukemia patients from an admixed population. Cancer Chemotherapy and Pharmacology, 94(3), 387-395. https://doi.org/10.1007/s00280-024-04689-x

Dreischmeier, E., Hecht, H., Crocker, E., Seckel, E., Wilcox, A., Fletcher, C., & Piccolo, J. (2024). Integration of a clinical pharmacist practitioner–led pharmacogenomics service in a Veterans Affairs hematology/oncology clinic. American Journal of Health-System Pharmacy, 81(19), e634-e639. https://doi.org/10.1093/ajhp/zxae122

Duffy, D. J. (2016). Problems, challenges and promises: perspectives on precision medicine. Briefings in bioinformatics, 17(3), 494-504. DOI: 10.1093/bib/bbv060

Ebert, B. L. (2017). Introduction to a review series on precision hematology. Blood, The Journal of the American Society of Hematology, 130(4), 408-409. https://doi.org/10.1182/blood-2017-06-735753

Farmaki, A., Manolopoulos, E., & Natsiavas, P. (2024). Will precision medicine meet digital health? A systematic review of pharmacogenomics clinical decision support systems used in clinical practice. OMICS: A Journal of Integrative Biology, 28(9), 442-460. https://doi.org/10.1089/omi.2024.0131

Fountzilas, E., Tsimberidou, A. M., Vo, H. H., & Kurzrock, R. (2022). Clinical trial design in the era of precision medicine. Genome medicine, 14(1), 101. https://doi.org/10.1186/s13073-022-01102-1

Gage, B. F., Bass, A. R., Lin, H., Woller, S. C., Stevens, S. M., Al-Hammadi, N., ... & Eby, C. S. (2019). Effect of low-intensity vs standard-intensity warfarin prophylaxis on venous thromboembolism or death among patients undergoing hip or knee arthroplasty: a randomized clinical trial. JAMA, 322(9), 834-842. doi:10.1001/jama.2019.12085

García-Alfonso, P., Saiz-Rodríguez, M., Mondéjar, R., Salazar, J., Páez, D., Borobia, A. M., ... & Abad-Santos, F. (2022). Consensus of experts from the Spanish Pharmacogenetics and Pharmacogenomics Society and the Spanish Society of Medical Oncology for the genotyping of DPYD in cancer patients who are candidates for treatment with fluoropyrimidines. Clinical and Translational Oncology, 24(3), 483-494. https://doi.org/10.1007/s12094-021-02708-4

Giri, J., Moyer, A. M., Bielinski, S. J., & Caraballo, P. J. (2019). Concepts driving pharmacogenomics implementation into everyday healthcare. Pharmacogenomics and Personalized Medicine, 305-318. https://doi.org/10.2147/PGPM.S193185

Hatem, N. A., Badullah, W., Yousuf, S. A., Ibrahim, M. I. M., Haidar, W. A., & Zawiah, M. (2025). Pharmacists’ perspectives on integrating pharmacogenetics in clinical practice. Human Genomics, 19, 71. doi: 10.1186/s40246-025-00780-3

Jensen, M. A., Ferretti, V., Grossman, R. L., & Staudt, L. M. (2017). The NCI Genomic Data Commons as an engine for precision medicine. Blood, The Journal of the American Society of Hematology, 130(4), 453-459. https://doi.org/10.1182/blood-2017-03-735654

Johnson, J. A., Caudle, K. E., Gong, L., Whirl‐Carrillo, M., Stein, C. M., Scott, S. A., ... & Wadelius, M. (2017). Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics‐guided warfarin dosing: 2017 update. Clinical Pharmacology & Therapeutics, 102(3), 397-404. https://doi.org/10.1002/cpt.668

Kanuri, S. H., & Kreutz, R. P. (2019). Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants. Journal of personalized medicine, 9(1), 7. https://doi.org/10.3390/jpm9010007

Love-Koh, J., Peel, A., Rejon-Parrilla, J. C., Ennis, K., Lovett, R., Manca, A., ... & Taylor, M. (2018). The future of precision medicine: potential impacts for health technology assessment. Pharmacoeconomics, 36(12), 1439-1451. https://doi.org/10.1007/s40273-018-0686-6

Ma, Y., Song, Z., Li, X., Jiang, D., Zhao, R., & Yi, Z. (2024). Toward genetic testing of rivaroxaban? Insights from a systematic review on the role of genetic polymorphism in rivaroxaban therapy. Clinical Pharmacokinetics, 63(3), 279-291. https://doi.org/10.1007/s40262-024-01358-3

Marron, J. M., & Joffe, S. (2017). Ethical considerations in genomic testing for hematologic disorders. Blood, The Journal of the American Society of Hematology, 130(4), 460-465. https://doi.org/10.1182/blood-2017-01-734558

Mauriello, A., Ascrizzi, A., Molinari, R., Falco, L., Caturano, A., D’Andrea, A., & Russo, V. (2023). Pharmacogenomics of cardiovascular drugs for atherothrombotic, thromboembolic and atherosclerotic risk. Genes, 14(11), 2057. https://doi.org/10.3390/genes14112057

Moc, C. (2020). Pharmacogenomics: an evolving clinical tool for precision medicine. Cleve. Clin. J. Med., 87, 91. doi:10.3949/ccjm.87a.19073

Relling, M. V., & Evans, W. E. (2015). Pharmacogenomics in the clinic. Nature, 526(7573), 343-350. https://doi.org/10.1038/nature15817

Relling, M. V., Schwab, M., Whirl‐Carrillo, M., Suarez‐Kurtz, G., Pui, C. H., Stein, C. M., ... & Yang, J. J. (2019). Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT 15 genotypes: 2018 update. Clinical Pharmacology & Therapeutics, 105(5), 1095-1105. https://doi.org/10.1002/cpt.1304

Sabana M, A., & Simon M, A. (2024). Emerging Biomarkers for Assessing Thrombotic Risk in Patients Receiving Direct Oral Anticoagulants (DOACs). Cardiovascular & Hematological Agents in Medicinal Chemistry. https://doi.org/10.2174/0118715257335790241203061748

Saud Faleh Alanazi. (2024). Comparative Evaluation of the Pharmacological Mechanisms, Clinical Indications, and Risk Management Strategies of Epidural Anesthesia in Surgical and Obstetric Interventions. Saudi Journal of Medicine and Public Health, 1(1), 47–57. https://doi.org/10.64483/jmph-36

Sethi, Y., Patel, N., Kaka, N., Kaiwan, O., Kar, J., Moinuddin, A., ... & Cavalu, S. (2023). Precision medicine and the future of cardiovascular diseases: a clinically oriented comprehensive review. Journal of clinical medicine, 12(5), 1799. https://doi.org/10.3390/jcm12051799

Seyhan, A. A., & Carini, C. (2019). Are innovation and new technologies in precision medicine paving a new era in patients centric care?. Journal of translational medicine, 17(1), 114. https://doi.org/10.1186/s12967-019-1864-9

Soefje, S. (2024). Exploring the intersection of pharmacogenomics and precision medicine in oncology practice and care team collaboration. Pharmacy Times. Retrieved from https://www.pharmacytimes.com/view/aan-2025-precision-medicine-and-pharmacogenomics-in-neurological-care

Taherdoost, H., & Ghofrani, A. (2024). AI's role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intelligent Pharmacy, 2(5), 643-650. https://doi.org/10.1016/j.ipha.2024.08.005

Taylor, J., Xiao, W., & Abdel-Wahab, O. (2017). Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood, The Journal of the American Society of Hematology, 130(4), 410-423. https://doi.org/10.1182/blood-2017-02-734541

Ueshima, S., Hira, D., Kimura, Y., Fujii, R., Tomitsuka, C., Yamane, T., ... & Katsura, T. (2018). Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. British journal of clinical pharmacology, 84(6), 1301-1312. https://doi.org/10.1111/bcp.13561

Yang, T., Chao, K., Zhu, X., Wang, X. D., Chan, S., Guan, Y. P., ... & Huang, M. (2024). Early proactive monitoring of DNA-thioguanine in patients with Crohn’s disease predicts thiopurine-induced late leucopenia in NUDT15/TPMT normal metabolizers. World Journal of Gastroenterology, 30(12), 1751. doi: 10.3748/wjg.v30.i12.1751

Published

2025-09-03

How to Cite

Thubab, R. Y., Madkhali, H. M., & Assiri, H. O. (2025). Precision Pharmacy in Hematology: Integration of Pharmacogenomics into Clinical Decision-Making in Anticoagulant and Chemotherapeutic Agents. Saudi Journal of Medicine and Public Health, 2(2). https://doi.org/10.64483/jmph-81

Issue

Section

Articles