Resource Optimization and Logistics Data Governance in Mass Casualty Incidents: A Review of Emergency Medical Services and Nursing Decision-Support Systems

Ali Mohammed Ali Jabbari (1) , Mousa Ahmed Aqeel Salhabi (1) , Ali Shooy Ugdi (1) , Khaled Hamad Alwan (1) , Fawaz Shoei Hakami (1) , Khaled Mossa Haqawi (1) , Mohammed Ali Hazazi (1) , Hussain Ali Jubran Shafei (1) , Amnah Sayyaf Alanazi (1) , Hanan Ashban Matar Al-Anzi (2) , Ali Ahmed Mohammed Hobani (1) , Hussain Mohammed Abdullah Matabi (3)
(1) Crisis and Disaster Center at Jazan Health Cluster, Ministry of Health, Saudi Arabia,
(2) Hafer AlBatin Central Hospital,Ministry of Health, Saudi Arabia,
(3) Crisis and Disaster Center at Jazan Health Cluster, Ministry of Health, Saudi Arabia, Saudi Arabia

Abstract

Background: Mass casualty incidents (MCIs) create immense strain on healthcare systems, requiring rapid, efficient mobilization of scarce resources. Effective coordination between field-based Emergency Medical Services (EMS) and receiving hospital nursing command is essential but often impeded by fragmented data systems.


Aim: This narrative review synthesizes literature on data-driven strategies and decision-support systems for optimizing MCI logistics, focusing on the EMS-nursing interface and the necessary data governance frameworks.


Methods: A thematic synthesis was conducted on peer-reviewed literature (2010-2024) from major databases (PubMed, CINAHL, Scopus, IEEE Xplore) using keywords related to mass casualty, resource management, decision-support, data governance, EMS, and nursing.


Results: The review identifies four key themes: 1) technological tools for real-time situational awareness; 2) predictive analytics for forecasting demand; 3) integrated decision-support systems for command decisions; and 4) foundational data governance models. Findings show a trend towards integrated dashboards and IoT-enabled tracking but reveal persistent gaps in system interoperability, governance protocols, and human-factor integration for high-stress deployment.


Conclusion: Optimal resource management in MCIs depends on interoperable, well-governed data systems that provide a shared operational picture. Advancing beyond technology to prioritize robust governance, standardized protocols, and human-centered design is crucial for transforming data into effective, ethical action that improves surge capacity and patient outcomes.

Full text article

Generated from XML file

References

Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE access, 11, 73782-73802. https://doi.org/10.1109/ACCESS.2023.3293035

AlAbdulaali, A., Asif, A., Khatoon, S., & Alshamari, M. (2022). Designing multimodal interactive dashboard of disaster management systems. Sensors, 22(11), 4292. https://doi.org/10.3390/s22114292

Alexander, D. E. (2021). On evidence-based practice in disaster risk reduction. International Journal of Disaster Risk Science, 12(6), 919-927. https://doi.org/10.1007/s13753-021-00381-3

Bazyar, J., Farrokhi, M., Salari, A., Safarpour, H., & Khankeh, H. R. (2022). Accuracy of triage systems in disasters and mass casualty incidents; a systematic review. Archives of academic emergency medicine, 10(1), e32. https://doi.org/10.22037/aaem.v10i1.1526

Bertl, M., Metsallik, J., & Ross, P. (2022). A systematic literature review of AI-based digital decision support systems for post-traumatic stress disorder. Frontiers in Psychiatry, 13, 923613. https://doi.org/10.3389/fpsyt.2022.923613

Castoldi, L., Greco, M., Carlucci, M., Lennquist Montán, K., & Faccincani, R. (2022). Mass Casualty Incident (MCI) training in a metropolitan university hospital: short-term experience with MAss Casualty SIMulation system MACSIM®. European Journal of Trauma and Emergency Surgery, 48(1), 283-291. https://doi.org/10.1007/s00068-020-01541-8

Cohen, I. G., & Mello, M. M. (2018). HIPAA and protecting health information in the 21st century. Jama, 320(3), 231-232. doi:10.1001/jama.2018.5630

Delen, D. (2020). Predictive analytics: Data mining, machine learning and data science for practitioners. FT Press.

Elmhadhbi, L., Karray, M. H., Archimède, B., Otte, J. N., & Smith, B. (2021). An ontological approach to enhancing information sharing in disaster response. Information, 12(10), 432. https://doi.org/10.3390/info12100432

Endsley, M. R. (2020). The divergence of objective and subjective situation awareness: A meta-analysis. Journal of cognitive engineering and decision making, 14(1), 34-53. https://doi.org/10.1177/1555343419874248

Fernald, C. S., Mount-Campbell, A. F., & Rochman, M. F. (2021, May). Healthcare’s Resilience During the COVID-19 Pandemic: Case Study of Nursing Operations Adaptation. In 2021 Annual Reliability and Maintainability Symposium (RAMS) (pp. 1-6). IEEE. https://doi.org/10.1109/RAMS48097.2021.9605728

Golan, M. S., Jernegan, L. H., & Linkov, I. (2020). Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic. Environment Systems and Decisions, 40(2), 222-243. https://doi.org/10.1007/s10669-020-09777-w

Greenhalgh, T. M., & Dijkstra, P. (2024). How to Read a Paper: The Basics of Evidence-based Healthcare. John Wiley & Sons.

Hajiali, M., Teimoury, E., Rabiee, M., & Delen, D. (2022). An interactive decision support system for real-time ambulance relocation with priority guidelines. Decision Support Systems, 155, 113712. https://doi.org/10.1016/j.dss.2021.113712

Hick, J. L., Hanfling, D., & Wynia, M. (2022). Hospital planning for contingency and crisis conditions: crisis standards of care lessons from COVID-19. Joint Commission journal on quality and patient safety, 48(6), 354. https://doi.org/10.1016/j.jcjq.2022.02.003

Hugelius, K., Becker, J., & Adolfsson, A. (2020). Five challenges when managing mass casualty or disaster situations: a review study. International journal of environmental research and public health, 17(9), 3068. https://doi.org/10.3390/ijerph17093068

Hughes, R., Hooper, V., Kennedy, R., Cummins, M. R., Lake, E. T., & Carrington, J. M. (2022). Interoperability explained: Advocate for data sharing that optimizes patient care and outcomes. American Nurse Journal, 17(4), 56-59.

Jalali, M. S., Russell, B., Razak, S., & Gordon, W. J. (2019). EARS to cyber incidents in health care. Journal of the American Medical Informatics Association, 26(1), 81-90. https://doi.org/10.1093/jamia/ocy148

Khatri, V., & Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148-152. https://doi.org/10.1145/1629175.1629210

Khorram-Manesh, A., Carlström, E., Burkle, F. M., Goniewicz, K., Gray, L., Ratnayake, A., ... & Magnusson, C. (2023). The implication of a translational triage tool in mass casualty incidents: part three: a multinational study, using validated patient cards. Scandinavian journal of trauma, resuscitation and emergency medicine, 31(1), 88. https://doi.org/10.1186/s13049-023-01128-3

Leider, J. P., DeBruin, D., Reynolds, N., Koch, A., & Seaberg, J. (2017). Ethical guidance for disaster response, specifically around crisis standards of care: a systematic review. American journal of public health, 107(9), e1-e9. https://doi.org/10.2105/AJPH.2017.303882

Lennquist, S. (Ed.). (2012). Medical response to major incidents and disasters: a practical guide for all medical staff. Springer Science & Business Media.

McDonald, P. L., Phillips, J., Harwood, K., Maring, J., & van der Wees, P. J. (2022). Identifying requisite learning health system competencies: a scoping review. BMJ open, 12(8), e061124. https://doi.org/10.1136/bmjopen-2022-061124

Na, H. S., & Banerjee, A. (2019). Agent-based discrete-event simulation model for no-notice natural disaster evacuation planning. Computers & Industrial Engineering, 129, 44-55. https://doi.org/10.1016/j.cie.2019.01.022

Nadj, M., Maedche, A., & Schieder, C. (2020). The effect of interactive analytical dashboard features on situation awareness and task performance. Decision support systems, 135, 113322. https://doi.org/10.1016/j.dss.2020.113322

Napi, N. M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Albahri, A. S. (2019). Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. Health and Technology, 9(5), 679-700. https://doi.org/10.1007/s12553-019-00357-w

Paramita, P. (2023). Public Health Information Standard Data Quality and Governance. Journal of World Science, 2(6), 817-824. https://doi.org/10.58344/jws.v2i6.313

Saadatmand, V., Ahmadi Marzaleh, M., Abbasi, H. R., Peyravi, M. R., & Shokrpour, N. (2023). Emergency medical services preparedness in mass casualty incidents: a qualitative study. Health science reports, 6(10), e1629. https://doi.org/10.1002/hsr2.1629

Seth, M., Jalo, H., Högstedt, Å., Medin, O., Björner, U., Sjöqvist, B. A., & Candefjord, S. (2022). Technologies for interoperable internet of medical things platforms to manage medical emergencies in home and prehospital care: protocol for a scoping review. JMIR research protocols, 11(9), e40243. https://doi.org/10.2196/40243

Shi, K., Peng, X., Lu, H., Zhu, Y., & Niu, Z. (2022). Application of social sensors in natural disasters emergency management: A review. IEEE Transactions on Computational Social Systems, 10(6), 3143-3158. https://doi.org/10.1109/TCSS.2022.3211552

Trucco, P., Nocetti, C., Sannicandro, R., Carlucci, M., Weinstein, E. S., & Faccincani, R. (2022). Assessing hospital adaptive resource allocation strategies in responding to mass casualty incidents. Disaster medicine and public health preparedness, 16(3), 1105-1115. doi:10.1017/dmp.2021.62

Van Barneveld, T., Jagtenberg, C., Bhulai, S., & van der Mei, R. (2018). Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation. Socio-Economic Planning Sciences, 62, 129-142. https://doi.org/10.1016/j.seps.2017.11.001

Veenema, T. G. (Ed.). (2018). Disaster nursing and emergency preparedness. Springer Publishing Company.

Weisfeldt, M. L., Sitlani, C. M., Ornato, J. P., Rea, T., Aufderheide, T. P., Davis, D., ... & ROC Investigators. (2010). Survival after application of automatic external defibrillators before arrival of the emergency medical system: evaluation in the resuscitation outcomes consortium population of 21 million. Journal of the American College of Cardiology, 55(16), 1713-1720. https://doi.org/10.1016/j.jacc.2009.11.077

Yu, W., Liu, X., Chen, H., Xue, C., & Zhang, L. (2018). Research of an emergency medical system for mass casualty incidents in Shanghai, China: a system dynamics model. Patient preference and adherence, 207-222. https://doi.org/10.2147/PPA.S155603

Authors

Ali Mohammed Ali Jabbari
almjabbar@moh.gov.sa (Primary Contact)
Mousa Ahmed Aqeel Salhabi
Ali Shooy Ugdi
Khaled Hamad Alwan
Fawaz Shoei Hakami
Khaled Mossa Haqawi
Mohammed Ali Hazazi
Hussain Ali Jubran Shafei
Amnah Sayyaf Alanazi
Hanan Ashban Matar Al-Anzi
Ali Ahmed Mohammed Hobani
Hussain Mohammed Abdullah Matabi
Jabbari, A. M. A., Mousa Ahmed Aqeel Salhabi, Ali Shooy Ugdi, Khaled Hamad Alwan, Fawaz Shoei Hakami, Khaled Mossa Haqawi, … Hussain Mohammed Abdullah Matabi. (2024). Resource Optimization and Logistics Data Governance in Mass Casualty Incidents: A Review of Emergency Medical Services and Nursing Decision-Support Systems. Saudi Journal of Medicine and Public Health, 1(2), 1627–1634. https://doi.org/10.64483/202412455

Article Details

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.